
Automating Apex Test Data Generation Using AI
Models
Published August 19, 2025 50 min read

AI-Driven Test Data Synthesizer for Apex Unit
Tests

Introduction

Salesforce developers often spend significant effort writing Apex unit tests to satisfy the 75% code coverage

requirement for deployments (Source: developer.salesforce.com). A common pain point is setting up test

data – creating realistic records like Accounts, Contacts, and custom objects – to exercise business logic in

isolation (Source: blog.beyondthecloud.dev). Poor data design, many validation rules, and complex triggers

can make test data setup cumbersome, often causing developers to get “stuck” writing lengthy @testSetup

methods (Source: blog.beyondthecloud.dev). To boost productivity and consistency, we propose an AI-

driven test data synthesizer that automatically generates both test method stubs and the necessary mock

data. This tool takes an Apex class signature (its methods, parameters, and relevant field definitions) as

Automating Apex Test Data Generation Using AI Models

Page 1 of 24

https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-apextestcasegen.html#:~:text=Unit%20tests%20must%20cover%20at,generation%20is%20enabled%20by%20default
https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=Unit%20Tests%20%E2%80%93%20most%20of,about%20breaking%20the%20whole%20product
https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=The%20most%20problematic%20part%20of,can%20stuck%20in%20your%20%40testSetup
https://cirra.ai/articles/generative-ai-lwc-form-builder
https://cirra.ai/articles/generative-ai-lwc-form-builder
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

input, and uses a large language model (LLM) to output a complete test class with realistic test records and

assertions. The goal is to automate repetitive unit test boilerplate, allowing developers to focus on business

logic instead of manual data construction.

This report presents a detailed design for such a system, including architectural diagrams, integration with

Salesforce APIs, and examples of AI-generated test classes. We discuss trade-offs between using prompt-

based LLM code generation versus deterministic templates (Source: diffblue.com). We also address

Salesforce-specific testing constraints – like governor limits, test isolation, and how to safely create or mock

database objects. Best practices for generating DML-safe test data (for standard objects like

Account / Contact and custom objects) are highlighted. We explore how the system can leverage the

Salesforce Metadata API, Tooling API, and Schema describe calls to gather necessary context (class

metadata and field requirements) and how it can deploy the generated tests. Finally, we consider the option

to fine-tune models on Apex code corpora and compare using a local model vs. a hosted AI service. The aim

is to provide architects and developers a comprehensive blueprint for an AI-assisted Apex test generator that

improves developer productivity while producing high-quality, maintainable tests.

Solution Architecture Overview

At a high level, the AI-driven test generator can be envisioned as an extension to the Salesforce developer

workflow (for example, a VS Code plugin or CLI tool) that interacts with both the Salesforce platform and an

LLM service. Figure 1 illustrates the architecture and data flow:

Figure 1: High-level architecture of the AI-driven Apex test synthesizer. The tool retrieves the Apex class

signature and relevant schema details, composes a prompt for an LLM (e.g. GPT), and obtains a generated

test class. The developer can review and refine the output before saving it back to the org via Metadata API

or to the codebase.

Starting from the left of Figure 1, the developer triggers test generation (for example, by a command or UI

action). The tool then performs the following steps:

1. Ingest Apex Class Signature – The target Apex class’s definition is retrieved. This includes the class

name, its methods (names, parameters, return types), and any properties or fields declared. The

signature can be obtained either from local source (if the developer is in an IDE) or via the Salesforce

Metadata API if only the class name is known. The Salesforce Metadata API allows programmatic

retrieval of Apex classes by name (Source: trailhead.salesforce.com)(Source: salesforcebuddy.com), and

can fetch the class body or a symbol table. Optionally, the Tooling API can be used to get a symbol table

(structured JSON of the class’s methods and attributes) for more formal parsing. At minimum, the tool

identifies the public methods and their signatures that need covering.

Automating Apex Test Data Generation Using AI Models

Page 2 of 24

https://cirra.ai/articles/cirra-ai-salesforce-change-management-automation
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=In%20recent%20years%2C%20large%20language,readable%20prompts
https://cirra.ai/articles/natural-language-interface-salesforce-cli
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system
https://trailhead.salesforce.com/trailblazer-community/feed/0D5KX00000MYpIV0A1#:~:text=URL%3A%20https%3A%2F%2Ftrailhead.salesforce.com%2Ftrailblazer,main%20content
https://salesforcebuddy.com/2019/02/metadata-api/#:~:text=Metadata%20API%20,list%20of%20metadata%20component
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

2. Retrieve Schema/Field Definitions – To generate valid test records, the tool gathers schema metadata

for any SObjects referenced by the class. For example, if a method accepts an Account or queries

Contact , the tool should know required fields and data types for those objects. This can be done via

Salesforce’s schema describe calls (e.g. the REST API sobjects/Account/describe or Tooling API

queries) to get field definitions (which fields are required, their types, picklist values, etc.). In practice, a

simple approach is to use the SFDX CLI or Metadata API to retrieve the object’s metadata. In one real-

world example, developers copy-pasted the Fields list from Salesforce Object Manager into the prompt

to help ChatGPT generate code (Source: salesforcedevops.net). Our tool can automate this by retrieving

field info: for standard objects like Account (where at least the “Name” field is required) and for custom

objects (which have a Name field and any custom required fields). This schema context will help the AI

suggest realistic field values that won’t violate not-null or format constraints (for instance, ensuring

Contact.LastName is set, as it’s required).

3. Compose Prompt for LLM – The class signature and schema details are combined into a prompt for the

LLM. The prompt likely includes: a brief instruction to “Generate an Apex test class” for the given

class, a summary of each method to test (and perhaps a description of the class’s purpose if available

via comments or naming), and a list of relevant object fields (especially required fields or important

business fields). The style can be inspired by interactive scripting tutorials – e.g., Keir Bowden’s blog

samples – where the code generation might be done step by step in a conversational manner. However,

in an automated tool, the prompt is crafted programmatically. It might look like: “Given the following

Apex class signature, produce an @isTest class with test methods. Class X has methods A(param1 Type1,

param2 Type2)… The Account object has fields: Name (required), Industry (picklist), etc…”. Including

field metadata can guide the LLM to create correct and meaningful record data (e.g., setting

Account.Name = 'Test Account' because Name is required). This approach was validated by a

Salesforce devops expert who fed custom field XML definitions into ChatGPT to improve test factory

generation (Source: salesforcedevops.net).

4. Invoke LLM for Test Generation – The prompt is sent to the chosen LLM (such as OpenAI’s GPT-4 or a

similar model). The LLM, having been trained on vast amounts of code including possibly Apex-like

syntax, will generate Apex code for a test class. The output should include:

The test class declaration (@isTest class naming convention like MyClassTest).

Test method stubs for each public method in the original class. Each test method will create

necessary test data, call the target method, then perform System.assert checks.

Realistic test data creation: e.g., inserting an Account with required fields populated, or

constructing custom object records with dummy values. The model might also include edge-case

tests (like passing nulls or empty lists) if prompted for thoroughness.

Automating Apex Test Data Generation Using AI Models

Page 3 of 24

https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=the%20best%20unit%20testing%20patterns%2C,then%20we%20start%20making%20factories
https://cirra.ai/articles/generative-ai-trailhead-module-creation
https://cirra.ai/articles/generative-ai-trailhead-module-creation
https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=the%20best%20unit%20testing%20patterns%2C,then%20we%20start%20making%20factories
https://cirra.ai/articles/ai-dynamic-formulas-apex-salesforce
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Proper structure using best practices: use of Test.startTest() and Test.stopTest() around the

execution under test (to reset governor limits and simulate separate transaction), and test method

modifiers (@isTest or testMethod as needed).

No use of org data (ensure SeeAllData=false either implicitly by default or explicitly set, to adhere

to test isolation best practice (Source: levelupsalesforce.com)).

It’s worth noting that Salesforce itself has introduced an AI-assisted test generation (Agentforce for

Developers) that uses LLMs for Apex, but it currently does not generate test data alongside the test

code(Source: developer.salesforce.com). Our tool specifically addresses that gap by synthesizing the

test records as well, not just empty test methods.

5. Review and Refinement – The raw output from the LLM is presented to the developer for review. Given

that LLMs can occasionally produce incorrect or suboptimal code (e.g. referencing non-existent fields or

methods due to hallucination (Source: diffblue.com)), this step is important. The developer can be shown

the generated test in an interactive panel (for example, similar to how Agentforce lets you “Accept” or

“Try Again” a generated test (Source: developer.salesforce.com)). If something looks off – say the AI

misunderstood a method’s intent or missed an assertion – the developer can provide feedback or adjust

the prompt and regenerate. This iterative, interactive scripting approach is inspired by how one might

refine code in an interactive session (as seen in some of Keir Bowden’s scripting examples). The tool

could allow the user to enter a follow-up instruction, like “Add a test for the negative path where the

input is null”, and send the refined prompt to the LLM, enabling a conversational improvement loop. This

feedback loop (dashed line in Figure 1) leverages the LLM’s ability to follow incremental instructions to

fine-tune the output within the same context.

6. Deployment of Test Class – Once the developer is satisfied, the final test class code is saved. In a local

development scenario (SFDX project), the class file can be created in the /force-

app/main/default/classes directory. The Salesforce CLI (sfdx) or Metadata API can then deploy this

class to the org for execution. Alternatively, if the tool is running in a web context or in org (e.g., a

browser-based IDE or a DevOps pipeline), it could call the Metadata API’s deploy() to push the new

Apex class. The Salesforce Metadata API supports deploying Apex classes from source, and the Tooling

API even allows creating ApexClass records directly. Proper API integration ensures the generated test is

persisted in the developer’s org or repository.

Finally, the new test can be executed to verify it passes and indeed covers the target class. The entire

process, from input class to runnable test, could take a matter of seconds in the ideal case – dramatically

accelerating the testing phase of development.

Prompt-Based Generation vs. Deterministic Templates

One architectural choice is whether to rely on a flexible LLM prompt or to use a deterministic code generation

template. Our AI-driven approach emphasizes the former, but it’s important to understand the trade-offs:

Automating Apex Test Data Generation Using AI Models

Page 4 of 24

https://www.levelupsalesforce.com/apex-test-class-best-practices#:~:text=LevelUpSalesforce%20www,not%20affected%20by%20the
https://cirra.ai/articles/salesforce-agentforce-ai-agents
https://cirra.ai/articles/salesforce-agentforce-ai-agents
https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-apextestcasegen.html#:~:text=This%20is%20a%20list%20of,Developers%2C%20check%20our%20github%20repo
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=This%20variability%20can%20lead%20to,several%20significant%20problems
https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-apextestcasegen.html#:~:text=test%20class%20to%20which%20to,Agentforce%3A%20Generate%20an%20Apex%20Test
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Prompt-Based LLM Generation: Using an LLM (like GPT-4) means the output test class is generated by

a learned model based on patterns in its training data. This offers flexibility and contextual richness. The

AI might incorporate best-practice patterns or handle a variety of class structures intelligently without

explicit programming. For example, given a method that does a SOQL query, it might automatically

create records so that the query returns results, and even assert on fields of those results. However, LLM

outputs are non-deterministic – the same prompt may yield slightly different code on different runs

(Source: diffblue.com). Subtle rewording of the prompt or changes in model version can alter the output.

This can lead to inconsistent tests if not carefully managed. There’s also a risk of hallucinations, where

the AI might invent field names or method behaviors that don’t exist, causing compile errors or logic

errors in tests (Source: diffblue.com). Despite these risks, prompt-based generation can produce very

human-like, readable tests that potentially cover edge cases (if prompted to do so) and follow naming

conventions or patterns seen in community code.

Deterministic Template Generation: A deterministic approach would use predefined code templates or

programmatic rules to generate tests. For instance, one could write a script that parses an Apex class

AST (abstract syntax tree) and outputs a test class skeleton: for each public method, create a test

method with the same name plus “_Test”, set up minimal required records, call the method, and assert

that the method executed (maybe by checking some result or side effect if it can be inferred). This

approach guarantees repeatability – the same input always produces the same output (Source:

diffblue.com). Tools like Diffblue Cover (for Java) exemplify deterministic test generation, using static

analysis to systematically create tests (Source: diffblue.com)(Source: diffblue.com). The benefit is

reliability: if you run it today or in 6 months on the same class, you get identical results, making tests

easier to trust and maintain in CI pipelines (Source: diffblue.com)(Source: diffblue.com). It also avoids

wild mistakes because the generation logic is fully under our control (no “AI creativity” to introduce

random code). On the downside, template-based tests might be simplistic or not handle complex logic

well. They might only cover happy-path scenarios unless the template logic itself becomes very

sophisticated (essentially needing to simulate logic execution to determine expected outcomes, which is

hard without an AI). Also, purely template-based solutions may require continual updates to handle new

language features or patterns.

Comparative Trade-offs: In practice, a hybrid approach can be effective. For example, the tool could use a

deterministic framework for the outer structure (ensuring consistent class naming, test method naming,

boilerplate annotations) but call the LLM to fill in the inner logic of test methods (the specific records to

create and assertions to make). This ensures basic consistency (one test class per target class, etc.) while

leveraging AI for the non-trivial parts (like guessing what assertions are meaningful). The choice may also

depend on use-case: if the priority is fast, consistent baseline coverage, deterministic generation might

suffice to get to 75% coverage on all classes. If the goal is developer assistance and productivity,

generating richer tests via AI (which the developer can refine) might add more value.

A summary comparison is given in Table 1:

Automating Apex Test Data Generation Using AI Models

Page 5 of 24

https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=While%20such%20approaches%20often%20appear,yields%20the%20same%20test%20output
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=This%20variability%20can%20lead%20to,several%20significant%20problems
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=What%20Is%20Deterministic%20Test%20Generation%3F
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=In%20recent%20years%2C%20large%20language,readable%20prompts
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=What%20Is%20Deterministic%20Test%20Generation%3F
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=1
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=Risks%20of%20non,by%20AI%20Assistants
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

APPROACH BEHAVIOR PROS CONS

**Prompt-

based LLM

Generation**

(e.g. GPT-4 or

Code LLM writes

the test from

instructions)

Non-deterministic, learned

patterns influence

output:contentReference\

[oaicite:20\]{index=20}

- Flexible, context-

aware (can incorporate

best practices)

- Little upfront rule-

coding required (model

does the work)

- Potentially more

human-like and

comprehensive tests

- Output can vary between

runs; not

repeatable:contentReference\

[oaicite:21\]{index=21}

- Risk of errors or hallucinated

code:contentReference\

[oaicite:22\]{index=22}

- Requires careful prompt

tuning and result validation

**Deterministic

Template

Generation**

(e.g. static code

analysis +

predefined test

patterns)

Consistent logic yields

same output for same

input:contentReference\

[oaicite:23\]{index=23}

- Predictable and

stable results (good for

CI):contentReference\

[oaicite:24\]{index=24}

- No surprises: easier

to debug and trust

tests

- No external model

needed (can run fully

offline)

- Requires developing and

maintaining generation logic

- May produce simplistic tests

that miss edge cases

- Harder to adapt to complex

code without AI reasoning

In our design, we lean on LLM-based generation to maximize automation of non-trivial test logic. But we

mitigate its downsides by anchoring the generation with real metadata (to reduce hallucination) and by

involving the developer in review (catching any issues). Over time, usage of the tool could also reveal

common patterns which we can feed back into the prompt or a fine-tuned model, gradually making the AI’s

output more deterministic in practice.

Salesforce Unit Testing Constraints and Considerations

Generating Apex tests is not just a code generation problem – one must respect the Salesforce platform’s

testing constraints and best practices. Our AI tool must be aware of these constraints to produce valid and

efficient tests. Key considerations include:

Isolation of Test Data: Apex tests run in their own context and cannot see the org’s standard data or

uncommitted records from other tests. By default, tests have SeeAllData=false (meaning no access to

org records like Accounts or Contacts that aren’t created in the test itself). The tool must ensure all data

needed for the test is created within the test method or a @TestSetup method. It should avoid using any

real IDs or querying for existing data (unless explicitly intended for certain integration tests, which is rare

and not recommended). Each test method gets a fresh set of governor limits and a rollback at the end,

Automating Apex Test Data Generation Using AI Models

Page 6 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

so the AI can freely insert and modify data knowing it will not persist or affect other tests (Source:

levelupsalesforce.com). Starting with API v28, even things like the VLOOKUP formula in validation rules

are isolated to test-created data (Source: concret.io), so the test should always supply its own records

for any data dependencies.

Governor Limits: Salesforce enforces strict limits in Apex, and tests are no exception. Each test method

(each execution context) can execute at most 100 SOQL queries and 150 DML statements, among other

limits (Source: salesforceben.com)(Source: salesforceben.com). The test generator needs to produce

code that stays well within these limits. This usually isn’t a problem for simple tests, but if the AI naively

creates dozens of records in separate insert statements, it could inch toward limits or slow down test

execution. Best practice is to bulk insert multiple records in one DML operation when possible (e.g.,

inserting a list of Contacts rather than one-by-one) to minimize DML count. Similarly, if the target class

needs a lot of setup data, the test should use a single query or efficient loops to set it up, and not e.g.

query inside a loop (a known “governor limit sin” (Source: salesforceben.com)). We can also instruct the

LLM to utilize Test.startTest()/Test.stopTest() . Besides giving a fresh set of limits for the portion

inside start/stop, this is crucial when testing asynchronous behavior or simply to separate setup from

execution time. Our prompts should encourage the AI to wrap the method invocation in

Test.startTest(); ... Test.stopTest(); . This way, any SOQL/DML in the tested code doesn’t

count against the setup operations, and any async code (future methods, queueables, batch jobs) will

run at Test.stopTest() . In summary, the generated test should be governor-aware: efficient data

creation and proper use of test context to avoid hitting limits.

Performance and Bulk Testing: Salesforce runs all tests, for example during deployments or CI. If our

generator creates extremely heavy tests (e.g., inserting thousands of records or doing nested loops), it

could slow down the test suite. We must balance realism with performance. For example, if testing a

method that processes a list of records, it’s enough to create a handful of records (maybe 2-3) to

simulate bulk behavior, rather than hundreds. The AI should default to small but meaningful data sets

(unless asked for stress tests). Salesforce also imposes a limit on total Apex test execution time and CPU

time per test. So a best practice is to avoid unnecessary waits or huge computations in tests. The tool

should not, for instance, generate an infinite loop or extremely large data by accident – again, careful

prompt design and maybe post-processing checks are needed.

Test Class Isolation and Order Independence: Each test class in Salesforce should not rely on another

test class’s data or execution order. The AI generator will produce a self-contained test class. If multiple

test methods in the same class share common setup data (like a set of Accounts that many methods

use), the generator can utilize an @testSetup method. This special method runs once per class before

the test methods and can insert common records. Using @testSetup is a best practice to avoid

duplicating setup code and to slightly improve performance (setup runs once, not before every method)

(Source: salesforce.stackexchange.com). Our tool can detect if multiple tests in the class would need the

same records and factor that into a single setup method. For example, if testing a service class with

many methods all operating on Account and Contact, creating one Account in testSetup and related

Automating Apex Test Data Generation Using AI Models

Page 7 of 24

https://www.levelupsalesforce.com/apex-test-class-best-practices#:~:text=LevelUpSalesforce%20www,not%20affected%20by%20the
https://www.concret.io/blog/apex-test-data-isolation-from-org-users-data#:~:text=Concret,then%20it%20will%20fail
https://www.salesforceben.com/what-are-salesforce-governor-limits-best-practices-examples/#:~:text=1,Exercise%201
https://www.salesforceben.com/what-are-salesforce-governor-limits-best-practices-examples/#:~:text=Other%20governor%20limits%20are%20associated,to%20achieve%20the%20desired%20result
https://www.salesforceben.com/what-are-salesforce-governor-limits-best-practices-examples/#:~:text=List,contactCount.add%28count%29%3B
https://salesforce.stackexchange.com/questions/297489/do-we-get-new-governor-limits-in-test-classes-for-each-test-method#:~:text=method%3F%20salesforce,aggregated%20with%20limits%20outside
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Contacts can serve all methods. However, the generator must also understand that any modifications to

those records in one test method do not persist into the next method (each test method gets a fresh

copy of the @testSetup data). This usually doesn’t require special handling unless the tests themselves

are interdependent (which they shouldn’t be). We simply ensure each test either uses the fresh

testSetup data or creates its own, and does not assume any ordering.

Mocking Callouts and Stubbing Behavior: Some Apex classes perform HTTP callouts or rely on

platform features like Send Email, which require special handling in tests. If the class under test does a

callout (using Http.send()), the test must implement an HttpCalloutMock and set

Test.setMock(...) in order to simulate a response. Our generator could recognize from the method

signature or body (if provided) that a callout is made (e.g., the presence of HttpResponse or

@future(callout=true) annotation) and automatically generate a nested class implementing

HttpCalloutMock with a dummy response. This would be an advanced capability, but very useful for

completeness. Similarly, if the class queries Schema.describe or uses a static method that we might

want to fake, we could use dependency injection or the Apex Stub API. Salesforce’s Stub API allows

creation of mock instances for interfaces or virtual classes at runtime (Source:

developer.salesforce.com). For instance, if the class uses a custom interface to fetch data (the “data

access layer” pattern), our test could use Test.createStub to provide a fake implementation (Source:

softserveinc.com)(Source: softserveinc.com). However, automating this requires deeper analysis of the

class, likely beyond just the signature. For now, a simpler approach is: if callouts are detected, generate a

placeholder mock class; if the class is doing something complex like a database operation that could be

abstracted, note it in comments for the user.

DML Safety and Data Validity: “DML-safe test data” means the records we create in tests should satisfy

all requirements so that inserts/updates succeed and do not trigger unintended side-effects. The AI

must be aware of required fields – e.g., all standard objects require a Name (or LastName for Contact,

etc.). If the target org has extra validation rules or triggers (beyond the tool’s knowledge), generated

data might cause those to fail. We can’t know all custom logic, but we can follow general best practices:

Always set required fields: for example, Account.Name , Contact.LastName , Opportunity.Name ,

etc. If an object has record types, and the code under test might expect a certain record type, the

test should set it or default to a valid one. (We might retrieve default RecordType Id via tooling API if

needed, but that adds complexity; likely we assume the default is fine or the user adjusts the

output).

Provide valid field values: e.g., if a field is a picklist, use a legitimate value. If our schema metadata

tells us the picklist options, we could randomly choose one or always pick the first. For standard

picklists like Industry on Account, the AI likely knows common values ("Technology", "Finance" etc.),

but for custom ones, we might include one in the prompt.

Automating Apex Test Data Generation Using AI Models

Page 8 of 24

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_testing_stub_api.htm#:~:text=Guide%20developer,testing%20and%20help%20you
https://www.softserveinc.com/en-us/blog/speed-up-your-unit-test-using-stub-api#:~:text=allows%20users%20to%20mock%20all,class%20by%20passing%20a%20map
https://www.softserveinc.com/en-us/blog/speed-up-your-unit-test-using-stub-api#:~:text=public%20static%20Object%20createMock,
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Avoid data that violates unique constraints or lookup relationships. If creating child records (like

Contacts linked to Account), ensure the foreign key (AccountId) is set to an Account inserted in the

test.

Consider using utility methods like Test.loadData (which loads test records from a static CSV

resource) for bulk data. Our tool might not automatically create CSVs, but for a very large setup, it

could suggest this approach or generate the minimal code to load a resource if one is available.

Generally, though, for AI generation, we focus on inline creation for simplicity.

Clean up not needed, as tests rollback, but still we don’t want to insert extraneous data. The AI

should create only what’s necessary for clarity and coverage.

By adhering to these constraints, the generated tests will not only compile but also run successfully in

Salesforce. The developer can have confidence that accepting the AI’s suggestion won’t break their CI

pipeline with governor limit errors or failing assertions. Our prompt to the AI will include some of these

guidelines (implicitly or explicitly). For instance, we might add a prompt note: “Ensure all required fields are

populated and use Test.startTest/stopTest appropriately. The test should not perform more than a few DML

operations.” If the AI still generates something problematic (like too many inserts in a loop), the review step

allows catching that and adjusting.

Best Practices for Test Data Generation in Apex

In generating test data, our tool follows established best practices so that the output is idiomatic and robust.

Here we summarize those best practices and how the AI tool implements them:

Use of Test Data Factory/Builder Patterns: In large projects, a common practice is to use a Test Data

Factory – a set of static methods or classes dedicated to creating test records (often using the Builder

pattern for flexibility) (Source: blog.beyondthecloud.dev)(Source: blog.beyondthecloud.dev). For

example, a TestDataFactory.createAccount() method that returns a ready-to-insert Account with all

required fields. Our AI could detect if the project already has such utility classes (perhaps via naming

conventions or scanning the codebase). If so, it might call those instead of duplicating record

construction. However, in a greenfield scenario, the AI will produce explicit record creation code. It will

create sObjects via the constructor syntax (e.g., new Account(Name='Acme Inc')). This is

straightforward and lets the test class be self-contained. For teams that prefer using a builder library

(like the open-source apex-domainbuilder or the example TDF in Piotr Gajek’s blog (Source:

blog.beyondthecloud.dev)), the tool could be configured to output using those APIs. For instance,

instead of insert new Account(Name='X') , it might do Account acct =

(Account)TestDataFactory.AccountBuilder().withName('X').build(); insert acct; . This is an

advanced customization – initially, we assume basic explicit creation which is more universally

understandable.

Automating Apex Test Data Generation Using AI Models

Page 9 of 24

https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=And%20here%20I%20present%20you,Test%20Data%20Factory
https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=Usage
https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=And%20here%20I%20present%20you,Test%20Data%20Factory
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Minimal but Meaningful Data: Each test should create the minimal set of records required to test the

logic, but also reflect realistic scenarios. If the Apex method being tested calls another class or triggers

an event, we should set data such that those paths execute (unless we explicitly want to isolate via

stubbing). For example, if saving a Contact will fire a trigger that expects an Account with certain field,

the test data factory or AI should ideally know to populate that. In general, the AI doesn’t know the org’s

triggers, so the safest route is to populate standard required fields and perhaps some commonly

expected fields (like an Account’s Industry if the code often filters by it, etc.). We can instruct the AI to

create data with obviously dummy but valid values (e.g., phone numbers "555-0101", emails

"test@example.com", etc.) to make tests more illustrative. It’s also a best practice not to hard-code Ids

or sensitive data in tests. The AI will generate new records and use their runtime-generated Ids (storing

them in variables as needed). If an external Id or specific record is needed (rare in isolated tests), the

test should insert that record then use it.

Avoiding SeeAllData=True: As a rule, we do not want the AI to use @isTest(SeeAllData=true) unless

absolutely necessary (for example, testing a report or functionality that explicitly requires existing data

like PriceBookEntries). Using existing org data can make tests flaky and non-isolated (Source:

levelupsalesforce.com). Thus, the AI should default to SeeAllData=false (which is the default if not

specified in API versions >= 24). We can have the generator explicitly mark tests with @isTest (without

SeeAllData) to be clear. In cases where the code uses objects like Users or RecordTypes which are

standard data but not accessible in tests by default, the correct approach is to either create required

setup (e.g., create a user with profile as needed) or use provided objects (like UserInfo.getUserId()

for running user, etc.). The tool may not delve that deep unless the class signature shows such needs

(like a method parameter of type User or reference to a profile). Those scenarios might need user

guidance to finalize.

Assertions and Outcome Checking: A generated test isn’t useful if it only runs the code without

verifying results. Our AI will attempt to assert important outcomes. If the method returns a value (say, a

List or a Boolean), the test should assert that value is as expected given the test inputs. If the method

performs DML (e.g., updates a record), the test can query that record after the method call (within the

test context) to verify the changes. For example, for a method that sets an Account’s status, the test will

insert an Account, call the method, then re-query that Account and

System.assertEquals(expectedStatus, acct.Status__c) . We prompt the AI to include at least one

assertion per test method, focusing on key fields or outputs. We also encourage it to use

System.assert variants with messages for clarity, although Salesforce tests typically either use

System.assertEquals/NotEquals or the newer Test.assertEquals . The AI likely knows the common

usage. It should also assert that the size of returned collections or number of records created matches

expectations. Essentially, we want the generated tests to not only increase coverage but also serve as

executable documentation of the code’s intended behavior.

Automating Apex Test Data Generation Using AI Models

Page 10 of 24

mailto:test@example.com
https://www.levelupsalesforce.com/apex-test-class-best-practices#:~:text=LevelUpSalesforce%20www,not%20affected%20by%20the
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

DML Safety and Bulk Inserts: When creating multiple records (e.g., testing bulk behavior or needing

multiple related records), the AI will generate code to insert them in a single statement if possible. For

example:

apex

Copy

List<Contact> contacts = new List<Contact>{ new Contact(FirstName='Jim',

LastName='Tester', AccountId=acct.Id), new Contact(FirstName='Pam', LastName='Tester',

AccountId=acct.Id) }; insert contacts;

This is better than two separate inserts. Similarly, if multiple object types need creation, order the DML to

avoid hitting limits (and always insert parent objects like Account before child objects like Contact to

satisfy lookup relations). Another safety measure is wrapping critical DML operations inside

Test.startTest/stopTest if the code under test itself runs in context of DML (though typically that’s used

for resetting limits rather than mandatory for correctness).

Ensuring Unique Data: Sometimes tests can interfere if data is not unique (though in isolation this is

less of a concern). But if the code under test queries by some unique field (say looking up an Account by

a unique name or external Id), the test should create a record with a unique value to avoid collisions or

ensure it finds that record. The AI can be instructed to use a randomness or static counter in naming

(e.g., “TestAccount1”, “TestAccount2”) if it’s creating multiple accounts, ensuring uniqueness. Salesforce

actually guarantees isolation, so collisions with existing org data aren't possible, but uniqueness can still

matter logically within the test.

By embedding these best practices in either the LLM prompt or in post-processing rules, the generated tests

will align with what seasoned Salesforce developers would write. This not only increases the likelihood that

the test passes on first run, but also that other developers can trust and understand the test later. As Piotr

Gajek noted, a proper test data factory or builder yields benefits like single-responsibility (each factory

knows how to build a certain object) and easier maintenance when requirements change (Source:

blog.beyondthecloud.dev). Our AI approach is essentially creating an on-the-fly test data factory tailored to

each class under test, following similar principles. If down the line something in the data requirements

changes (say a field becomes required), re-running the AI generator on the class could update the tests

consistently.

Example Scenarios and AI-Generated Test Classes

To demonstrate how the AI-driven synthesizer works, let’s walk through a couple of examples. We provide a

sample Apex class signature as input and show the kind of test class the LLM would generate, with

explanations.

Automating Apex Test Data Generation Using AI Models

Page 11 of 24

https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=,only%20in%20a%20specific%20factory
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Example 1: Service Class with SOQL Query and DML

Input Apex Class – Suppose we have an Apex class ContactService with a method that queries contacts

for a given account and updates their status. The class might look like this (the AI would be given at least the

signature, and ideally some docstring or comment about its behavior):

apex

Copy

public class ContactService { /** * Sets the Status__c of all Contacts for the given Account

to "Active". */ public static void activateContacts(Id accountId) { List<Contact> contacts =

[SELECT Id, Status__c FROM Contact WHERE AccountId = :accountId]; for (Contact c : contacts)

{ c.Status__c = 'Active'; } update contacts; } }

Here, the method activateContacts takes an Account Id and sets all related contacts’ custom Status field

to "Active". We need to test that it correctly updates contacts (and does nothing unexpected if there are no

contacts).

AI-Generated Test Class – The tool, after processing the above, produces something like:

apex

Copy

@IsTest(seeAllData=false) private class ContactServiceTest { // Test data creation for all

tests @testSetup static void setupData() { // Create a test Account and some Contacts for

that Account Account testAcct = new Account(Name='Test Account'); insert testAcct;

List<Contact> contacts = new List<Contact>{ new Contact(FirstName='Alice', LastName='Doe',

AccountId=testAcct.Id, Status__c='Inactive'), new Contact(FirstName='Bob', LastName='Doe',

AccountId=testAcct.Id, Status__c='Inactive') }; insert contacts; // Note: contacts[0] and

contacts[1] now have Status__c = 'Inactive' } static testMethod void

testActivateContacts_updatesStatus() { // Query the account and related contacts from setup

Account acct = [SELECT Id FROM Account LIMIT 1]; List<Contact> contactsBefore = [SELECT Id,

Status__c FROM Contact WHERE AccountId = :acct.Id]; System.assertEquals(2,

contactsBefore.size(), 'There should be 2 contacts initially');

System.assertEquals('Inactive', contactsBefore[0].Status__c, 'Pre-condition: contact status

is Inactive'); // Call the method under test Test.startTest();

ContactService.activateContacts(acct.Id); Test.stopTest(); // After invocation, all contacts

for the account should have Status__c = 'Active' List<Contact> contactsAfter = [SELECT Id,

Status__c FROM Contact WHERE AccountId = :acct.Id]; System.assertEquals(2,

contactsAfter.size(), 'There should still be 2 contacts after activation'); for (Contact c :

Automating Apex Test Data Generation Using AI Models

Page 12 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

contactsAfter) { System.assertEquals('Active', c.Status__c, 'Contact status should be Active

after activation'); } } static testMethod void testActivateContacts_noContacts() { // Create

a new Account with no contacts Account emptyAcct = new Account(Name='Empty Account'); insert

emptyAcct; // Call the method on an account with no contacts (should not fail)

Test.startTest(); ContactService.activateContacts(emptyAcct.Id); Test.stopTest(); // Verify

that no error was thrown and nothing to assert (no contacts to check) // You might verify

that it simply didn't crash. Optionally, confirm that zero contacts in DB remain zero.

Integer contactCount = [SELECT count() FROM Contact WHERE AccountId = :emptyAcct.Id];

System.assertEquals(0, contactCount, 'No contacts should exist for the empty account'); } }

Explanation: This test class ContactServiceTest shows how the generator follows best practices and

covers multiple scenarios:

We see @IsTest(seeAllData=false) at the top, ensuring isolation. The class is marked private (typical

for test classes).

A @testSetup method creates common test data: one Account (testAcct) and two Contact records

linked to it. This setup data is used by one of the test methods. The AI chose to create two contacts to

simulate updating multiple records (bulk behavior) and set their Status__c initially to "Inactive" to later

observe the change. It inserts them in a single DML operation (bulk insert) for efficiency.

In testActivateContacts_updatesStatus , it queries the setup contacts (verifying the pre-condition). It

then calls the target method within Test.startTest()/Test.stopTest() . After that, it queries again to

verify the Status__c field on all contacts is now "Active". Multiple assertions are included: checking the

count of contacts and their status values. This ensures the test will fail if the method didn’t do its job for

every contact.

The test method name clearly indicates it’s testing the update of status. The AI also generated a second

test method: testActivateContacts_noContacts . This tests the edge case where the account has no

contacts. It creates a new Account (separately, not using testSetup data) and calls activateContacts

on it. The expectation is that nothing bad happens (no errors, and obviously no contacts to update). It

verifies that the count of contacts for that account remains 0, essentially asserting the method didn’t

inadvertently insert or do anything weird. Including such an edge-case test shows the AI’s capability to

handle different logical branches (in this case, the branch where the query returns an empty list) – likely

because the prompt or training encourages covering “zero records” scenario.

This example demonstrates the synthesizer’s attention to details:

Required Fields: It set Account.Name and Contact.LastName (the latter via LastName='Doe' for both

contacts), which are required fields. Also set a dummy FirstName for completeness.

Automating Apex Test Data Generation Using AI Models

Page 13 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Meaningful Data: It used "Inactive" and "Active" to mirror realistic status values, which makes the test

more understandable (as opposed to some random strings).

Governor Compliance: The queries and inserts are well within limits (only a couple of SOQLs and

DMLs). The use of testSetup ensures the main test doesn’t do repeated inserts for the same base data.

Multiple Scenarios: By generating two test methods, it increases coverage (both when contacts exist

and when none exist). If the class had more methods, it would generate corresponding tests for each.

The developer could now review this output. Perhaps they notice that in the second test, there is no explicit

assertion of “no error”. In Apex, if an unhandled exception was thrown by activateContacts , the test would

fail, so implicitly that test covers the no-error scenario. The comment is enough. The developer might accept

this as is.

If they wanted to refine (say the requirement was that if no contacts, maybe it should throw an exception –

but in our class it doesn’t), they could modify accordingly. But assuming this matches intent, the test can be

saved and run, immediately giving us coverage on ContactService.activateContacts with minimal manual

effort.

Example 2: Custom Object with Calculation Logic

Input Apex Class – Consider a custom scenario with two custom objects, Invoice__c and Line_Item__c .

Invoices have line items, and we want to calculate the total amount of an invoice. The Apex class might be:

apex

Copy

public class InvoiceCalculator { // Computes total Price for an invoice by summing its line

items public static Decimal calculateTotal(Invoice__c inv) { Decimal total = 0; for

(Line_Item__c item : [SELECT Quantity__c, Unit_Price__c FROM Line_Item__c WHERE Invoice__c =

:inv.Id]) { total += (item.Quantity__c == null ? 0 : item.Quantity__c) * (item.Unit_Price__c

== null ? 0 : item.Unit_Price__c); } return total; } }

The method calculateTotal takes an Invoice__c record (could be not inserted yet, but here presumably

an invoice Id is used in query) and sums up Quantity * Unit_Price for each related line item. We need to test

that it correctly sums values and handles nulls.

AI-Generated Test Class – The output might be:

apex

Copy

Automating Apex Test Data Generation Using AI Models

Page 14 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

@isTest private class InvoiceCalculatorTest { static testMethod void

testCalculateTotal_basicSum() { // Create an Invoice record Invoice__c inv = new

Invoice__c(Name='Test Invoice'); insert inv; // Create two Line_Item__c records related to

this invoice Line_Item__c item1 = new Line_Item__c(Invoice__c = inv.Id, Quantity__c = 2,

Unit_Price__c = 50); Line_Item__c item2 = new Line_Item__c(Invoice__c = inv.Id, Quantity__c

= 1, Unit_Price__c = 100); insert new Line_Item__c[]{ item1, item2 }; // Call the calculator

Test.startTest(); Decimal total = InvoiceCalculator.calculateTotal(inv); Test.stopTest(); //

The expected total is 2*50 + 1*100 = 200 System.assertEquals(200, total, 'Total should be

sum of line item prices'); } static testMethod void testCalculateTotal_handlesNulls() { //

Create an Invoice with line items that have null values Invoice__c inv2 = new

Invoice__c(Name='Test Invoice Nulls'); insert inv2; Line_Item__c itemA = new

Line_Item__c(Invoice__c = inv2.Id, Quantity__c = 3, Unit_Price__c = null); Line_Item__c

itemB = new Line_Item__c(Invoice__c = inv2.Id, Quantity__c = null, Unit_Price__c = 10);

insert new Line_Item__c[]{ itemA, itemB }; Test.startTest(); Decimal total2 =

InvoiceCalculator.calculateTotal(inv2); Test.stopTest(); // Expected: itemA contributes 3*0

= 0 (Unit_Price null treated as 0), itemB contributes 0*10 = 0, total = 0.

System.assertEquals(0, total2, 'Total should treat null quantities or prices as 0'); } }

Explanation: In this test, because the logic is a pure function (no state changes in the database except the

query), using Test.startTest() may not be strictly necessary for functionality – but it’s still used to

simulate best practice isolation of the execution. The test focuses on validating the returned value.

The first test method testCalculateTotal_basicSum creates an Invoice__c (note: custom objects

require a Name as well, which is provided as 'Test Invoice'). It inserts it to get an Id, because the code

uses inv.Id in the query. Then it creates two Line_Item__c records linked to that invoice Id, with

specific Quantity and Unit_Price values (2 @ 50, and 1 @ 100). After inserting them, it calls

calculateTotal(inv) . The returned Decimal is asserted to equal 200. This checks that the summation

logic works for normal non-null values.

The second test, testCalculateTotal_handlesNulls , addresses a subtle aspect: the code treats null

Quantity or Price as 0. It creates an invoice and two line items where one has Unit_Price__c = null

and the other has Quantity__c = null . After insertion, calling the method should yield 0 (since

effectively 3_0 + 0_10 = 0). The test asserts that. This ensures that if the code didn’t handle nulls

properly, the test would catch it. This test was likely generated because the AI recognized from the code

that null handling is a branch (the ternary == null ? 0 : value). The AI thus invented a scenario to

cover it. This is a good example of AI going beyond a trivial test: it not only covers the general case but

also an edge case which a human tester would consider.

We also observe:

It uses list initialization for inserting multiple line items at once, again an efficient practice.

Automating Apex Test Data Generation Using AI Models

Page 15 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

It gave distinct names to invoices to avoid any confusion (though not strictly necessary in isolation, but

good for readability).

It doesn’t use a shared @testSetup here; possibly because each test uses distinct data and there’s no

repeated setup to factor out. This is fine; using testSetup for only one method’s data doesn’t add value.

The output is a clean, focused test class. It leverages the knowledge of custom object fields Quantity__c

and Unit_Price__c (which we assume were provided via field definitions in the prompt). The tool might

have known these from a snippet of the class or an accompanying description of the custom object. In

practice, we could retrieve the Custom Object’s fields via Tooling API to inform the AI. Ensuring the AI knows

the correct API names (like Unit_Price__c) is crucial – if the prompt had a typo or the AI hallucinated a

different field name, the test would not compile. By feeding the actual field names (perhaps from the class’s

SOQL string, which the AI can see, or from a describe call), we anchor it in reality.

Both examples show the value of AI: it created non-obvious tests (the empty contacts scenario, the null

handling scenario) that cover more than just the “happy path”. These are the kinds of tests that improve

confidence in code quality. A deterministic template might not have thought to do that without explicit

programming. The AI leveraged the logic present in code to suggest those cases – a sign of understanding

the intent to some degree.

Integration with Salesforce APIs and Developer Tools

To implement this solution in the real Salesforce ecosystem, we need to integrate with various tools and APIs.

Here we outline how the test synthesizer interacts with Salesforce and developer tooling:

Salesforce DX (CLI) Integration: The Salesforce CLI (sfdx) is a primary tool for fetching and deploying

metadata in a developer workflow. Our AI generator can be built as a plugin or script that works

alongside the CLI. For example, a developer could run a command like sfdx apexgen:testdata -c

MyClass.cls which behind the scenes:

1. Retrieves MyClass.cls metadata (if not already in the local project) using sfdx

force:source:retrieve or by reading the local file.

2. Calls the AI service with the class signature and possibly additional context.

3. Receives the test code and saves it as MyClassTest.cls in the project.

4. Optionally, immediately runs sfdx force:source:deploy (or force:apex:test:run) to deploy

and execute the test, verifying it passes.

Automating Apex Test Data Generation Using AI Models

Page 16 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

By automating these steps, the developer can seamlessly incorporate AI generation into their

development cycle. CLI integration also means it can be used in CI pipelines (for example, auto-generate

tests for new classes in a pull request).

VS Code Extension: Salesforce provides an official VS Code extension pack. The Agentforce feature is

likely part of that (with a UI for test generation as described (Source: developer.salesforce.com)). We

could either hook into that or create our own extension. A VS Code extension could provide a context

menu “Generate Test Class (AI)” when right-clicking an Apex class. This would trigger our backend

process. The advantage of a VS Code integration is that we can show a diff or preview of the generated

test and perhaps allow the user to edit it in the editor with AI suggestions (like GitHub Copilot might).

Given the collaborative nature of LLMs, such an extension could even allow chat-based refinement: e.g.,

open a panel where the developer can type, “Add another test method for when parameter X is null” and

the AI then modifies the code accordingly.

Metadata API: For retrieving and deploying classes, the Metadata API is fundamental. It has operations

to retrieve components (like classes, objects) either via package.xml definitions or direct API calls. Tools

like the SalesforceBen Metadata API guide (Source: salesforceben.com) show how you can fetch a

class’s content. Internally, Salesforce’s Apex provides a Metadata.Operations.retrieve in Apex itself

(Source: salesforcebuddy.com) (though that’s more for use inside Apex, which is not our case). We will

likely use either the JS Force library (for Node) or a Python simple-salesforce library to call the Metadata

API from our tool, if not using CLI. After generation, deploying the test class uses Metadata.deploy with

the class file packaged in a zip. Alternatively, since test classes are Apex, we could use the Tooling API

to create it: the Tooling API has a resource to insert an ApexClass sObject (with fields like Name, Body).

If using an OAuth connection, posting to /services/data/vXX.X/tooling/sobjects/ApexClass with

JSON containing the body might directly create the class in the org (though it might bypass some

validations that Metadata deploy would catch, so Metadata API is safer).

Tooling API and SymbolTable: The Tooling API can retrieve an Apex class’s symbol table, which is a

JSON listing of its methods, properties, and references. This could be useful to programmatically

determine which SObject types the class references (e.g., if symbol table shows it uses Account or

custom object types). It might also list if it implements an interface (which could hint needing a stub in

test) or if it’s a trigger handler requiring certain records. Using this info, the prompt to the AI can be

enriched (for instance: "Class MyClass references Contact, Account objects and makes an HTTP callout"

– so AI knows to include contact/account data and maybe a callout mock). We can obtain a symbol table

by querying Tooling API: SELECT SymbolTable from ApexClass WHERE Name='MyClass' . The symbol

table contains e.g. an array of externalReferences with names of sObjects or classes referenced. This

mechanistic approach ensures we don't miss a needed object’s data.

Schema Describe (SOAP/REST): In addition to or instead of Tooling API for fields, we can call the

Salesforce REST API (with the tooling or metadata scope) to get object describes. For example, a GET to

/services/data/v57.0/sobjects/Account/describe returns JSON of all Account fields, including

Automating Apex Test Data Generation Using AI Models

Page 17 of 24

https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-apextestcasegen.html#:~:text=1.%20Right,Try%20Again
https://www.salesforceben.com/salesforce-metadata-api-your-complete-guide/#:~:text=Salesforce%20Metadata%20API%3A%20Your%20Complete,yourself%20with%20its%20various
https://salesforcebuddy.com/2019/02/metadata-api/#:~:text=Metadata%20API%20,list%20of%20metadata%20component
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

which are required (nillable=false and defaultedOnCreate=false typically means required), data

types, length, etc. For custom objects or fields, the same works

(.../sobjects/Invoice__c/describe). This is simpler than parsing the XML from Metadata API for a

CustomObject. Using this, we can dynamically build a snippet for the prompt like: "Account required

fields: Name; Contact required fields: LastName; Invoice__c required: Name; Line_Item__c required:

(none beyond lookup to Invoice)". The AI can use this to avoid omissions. This approach requires the tool

to have API access (likely via OAuth session or using the user’s sfdx auth).

Einstein GPT and Apex: It’s worth noting Salesforce’s own Einstein GPT for Developers might provide

an official API or interface to do some of this in the future. As of mid-2025, Salesforce announced things

like Apex GPT integration (Agentforce) with presumably some fine-tuning on Apex. Our tool could either

call OpenAI’s API or potentially a Salesforce-provided LLM endpoint (ensuring data stays within

Salesforce’s trust boundary if that’s a concern). If using OpenAI or Azure OpenAI, we must consider data

security (source code and schema being sent to an external service). One could anonymize certain

identifiers in the prompt (e.g., remove org-specific names) if needed, or opt for an on-premise model as

discussed in the next section.

Testing the Test Generator: Finally, the irony – we should test our generator. One could imagine having

Apex classes as input and expected test classes as output for known cases, to evaluate the AI’s

performance. This is more on the development of the tool itself, but it’s something to consider (perhaps

using smaller prompt+completion for verification or using static analysis to verify the generated test

indeed covers the methods intended). For instance, after generation, the tool could quickly parse the

test class to ensure every public method of original class is called at least once in the test. If not, it might

warn the user or attempt another generation.

Model Selection, Fine-Tuning, and Deployment Options

A critical aspect of this system is the AI model generating the Apex code. We have choices in model selection

and how to host it, each with implications:

Use of Large Pre-trained Models (GPT-4, etc.): Models like OpenAI’s GPT-4 are very powerful, having

been trained on massive code datasets (hundreds of billions of parameters, including likely Apex-like

languages or enough general knowledge to adapt) (Source: salesforcedevops.net). They exhibit

emergent abilities to understand context and generate coherent, contextually appropriate code. Using

GPT-4 via OpenAI’s API (or Azure’s hosted instance) would likely yield the highest quality output

currently – it can handle nuanced instructions and produce correct Apex syntax in most cases. The

advantage is we don’t have to train a model from scratch. The disadvantage is sending potentially

sensitive code or schema data to an external service, and relying on a third-party service with per-

request cost. There’s also rate limiting and the need for internet connectivity from the dev environment

(though VS Code with internet or a server proxy can manage that).

Automating Apex Test Data Generation Using AI Models

Page 18 of 24

https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=But%20there%20is%20something%20different,industry%20AI%20systems%20obsolete
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Salesforce Einstein GPT (Code): Salesforce might offer their own version of code generation integrated

with Salesforce data. If such an API is accessible, it could be an option, possibly ensuring that the data

stays within Salesforce’s servers. It could even have some Salesforce-specific tuning. However, details

on that are scant publicly beyond the VS Code plugin.

Fine-Tuned Code LLM on Apex: Another approach is to fine-tune an existing open-source LLM on a

corpus of Apex code. There are code-specialized models (like Salesforce’s CodeGen series,

HuggingFace’s StarCoder, Meta’s LLaMA 2 with coding instruction tuning, etc.). Fine-tuning means

taking a base model and training it further on domain-specific data. If a company had a large repository

of Apex classes and test classes, in theory one could fine-tune a model to learn the mapping from class

to test. This could make it better at Apex-specific idioms and possibly more deterministic in output for

that company’s coding standards. Fine-tuning can be done on models like CodeT5, Codex (if OpenAI

allowed, but they pivot more to instructions rather than fine-tuning now), or smaller LLMs that one can

run on-premise. The benefits are:

The model might pick up on common patterns (e.g., how that org usually structures tests, or naming

conventions).

The model can be hosted internally to alleviate privacy concerns.

Once fine-tuned, generation might be faster for that domain (and possibly cheaper if running on

owned hardware).

The downsides:

Fine-tuning requires a substantial dataset and expertise. Apex code corpora are not as readily

available as, say, Java or Python. One might extract open-source packages or ask the community for

contributions, but many Apex codebases are proprietary. There is some public code on GitHub (e.g.,

Salesforce sample apps, triggers, frameworks) that could form a base.

Even if fine-tuned, the model may not reach GPT-4’s level of “general intelligence” in understanding

requirements.

Maintaining the model (updates, ensuring it generalizes to new patterns) is non-trivial.

As an intermediate step, one could use prompt fine-tuning (few-shot learning): i.e., include one or two

example class-to-test transformations in the prompt as a guide. This often boosts output quality without

actual model training. For instance, prompt: “Example:\n\nTest:\n\nNow generate test for the following

class:\n”.

Local vs Hosted Deployment: Table 2 compares these options:

Automating Apex Test Data Generation Using AI Models

Page 19 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

MODEL

DEPLOYMENT
DESCRIPTION PROS CONS

**Cloud-

hosted

LLM**

(OpenAI GPT-

4, Azure

OpenAI, etc.)

Leverage a third-party API to

generate code. GPT-4 is

nearly 1 trillion

parameters:contentReference\

[oaicite:43\]{index=43}, with

broad knowledge and

capability.

- State-of-the-art

performance on code

generation (high quality)

- No need to manage

infrastructure or model

updates

- Scales on demand with

high availability

- Code and metadata sent

off-site (potential IP/security

concerns):contentReference\

[oaicite:44\]{index=44}

- Recurring usage cost (API

calls)

- Dependent on external

service uptime and latency

**On-

Premise /

Self-Hosted

LLM**

(Fine-tuned

open-source

model

deployed in-

house)

Run the AI model on the

company’s own servers or

developer machine. E.g., a

13B parameter model fine-

tuned on Apex code.

- Data stays within the

organization (improved

privacy):contentReference\

[oaicite:45\]{index=45}

- Can customize model

(fine-tune) to org-specific

code style

- Potentially lower variable

cost if infrastructure is in

place (after initial setup)

- Requires powerful

hardware (GPUs) and ML

expertise to deploy

- May not match quality of

the largest proprietary

models

- Longer iteration to update

model with new data or

improvements

In many enterprise settings, data security is paramount, so a popular approach is a hybrid: use a local model

for anything involving sensitive code, and use a cloud model for more generic tasks. For our test generator, a

company might start with GPT-4 during prototyping (to maximize success in generation) and later transition

to a smaller local model that has been bootstrapped with knowledge gained (e.g., by fine-tuning on outputs

from GPT-4 on a large sample of classes – effectively distilling knowledge). We should highlight that any use

of production code in prompts should be done carefully in compliance with company policy and possibly with

OpenAI’s data usage policies (OpenAI allows opting out of data retention, etc., which one would do). The

reference to one Reddit user’s “Custom GPT for Apex Test Class Generator” suggests community interest in

using GPT models for exactly this task (Source: reddit.com), indicating that hosted models are already being

tried by Salesforce devs.

Finally, whichever model is used, we must handle model limitations – LLMs sometimes produce output that

looks correct but isn’t (logic errors or minor syntax issues). Thus, integrating a validation step is wise: after

generation, we could run the Apex Compiler (via the Tooling API or sfdx force:apex:compile if such existed) to

check syntax. Salesforce doesn’t have a standalone compiler API, but deploying to a scratch org will compile

it. If compilation fails, we catch the errors and potentially feed them back to the AI (e.g., “the code didn’t

compile, error on line X: Unknown field Y, please fix that”). This turns into another prompt to correct

mistakes. This automated feedback loop can vastly improve reliability. It’s similar to how Copilot might

suggest code and the developer sees a red squiggly and either edits or asks for a fix.

Automating Apex Test Data Generation Using AI Models

Page 20 of 24

https://www.reddit.com/r/salesforce/comments/17tjar9/custom_gpt_for_salesforce_the_complete_apex_test/#:~:text=Custom%20GPT%20for%20Salesforce%3A%20The,classes%20for%20your%20Apex%20code
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

In summary, the model choice is a balance between quality, privacy, and cost. Many will opt for GPT-4 or

successors for quality, at least initially. Salesforce’s own offerings might soon provide high-quality codegen

with more integrated privacy (e.g., running on Salesforce’s trusted cloud). Over time, as open-source LLMs

improve, an on-prem solution fine-tuned to Apex could become viable and cost-effective for large teams.

Conclusion and Future Outlook

Building an AI-driven test data synthesizer for Apex tests stands to significantly enhance developer

productivity on the Salesforce platform. By automating the rote parts of test writing – especially constructing

and inserting test records – developers can focus on verifying business logic rather than wrestling with setup.

The proposed system combines Salesforce metadata intelligence with the generative power of LLMs to

produce test classes that are not only covering code, but are meaningful and maintainable.

We have outlined how such a tool can be architected: from retrieving class signatures and schema via

Salesforce APIs, to prompting an LLM (like GPT) to generate the test code, and integrating the result back

into the development workflow. The approach respects Salesforce’s unique constraints (governor limits,

isolation, etc.) and follows best practices in test data creation (ensuring required fields, minimal necessary

data, clear assertions). The examples provided illustrate that an AI can write competent Apex tests for both

standard scenarios and edge cases, sometimes catching things a human might miss. This not only saves time

but can improve code quality by encouraging more thorough testing.

In weighing prompt-based generation versus deterministic templating, we acknowledge the need for

consistency and reliability in enterprise environments. Our design tries to get the best of both: leveraging AI’s

flexibility while keeping the outputs in check through user review, iterative prompts, and possibly combining

templates for structure. As the technology matures, we might see more deterministic behavior from

specialized models or hybrid systems (for example, first using static analysis to outline test cases, then AI to

fill in the guts).

Looking forward, several opportunities could make this even more powerful:

Deeper Static Analysis: The tool could analyze the Apex code to derive expected outcomes (like

symbolic execution) and have the AI assert not just basic outcomes but correct business logic results.

This could bring the generated tests closer to true specification-based tests, not just code coverage.

Integration with ALM: Tying test generation into source control or CI. For instance, if a pull request

lacks tests for new Apex classes, the CI could auto-generate draft tests and include them for the

reviewer to consider – jumpstarting the review process.

User Feedback Loop: Incorporate feedback from actual test runs. If a generated test fails, the failure

message could be fed to the AI to improve the test (e.g., adjust an assertion or add handling for an

unexpected outcome).

Automating Apex Test Data Generation Using AI Models

Page 21 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

Broader AI Assistants: Expand beyond test classes – perhaps generate test data creation scripts for

manual QA, or documentation of what scenarios the tests cover, etc. With Salesforce’s increasing AI

offerings, one can imagine a future DevOps process where an AI agent monitors code and suggests tests

continuously (Salesforce has hinted at “1 million Agentforce conversations” and evolving AI in their

ecosystem (Source: salesforcedevops.net)).

In conclusion, an AI-driven Apex test data synthesizer exemplifies the positive impact of generative AI on

software engineering: reducing drudgery, enforcing best practices, and ultimately leading to more robust

applications. By carefully blending Salesforce platform knowledge with modern AI models, enterprise

developers and architects can achieve a new level of efficiency in meeting the always-important requirement

of quality (and 75% coverage!) in their Salesforce deployments. The implementation details and examples

given in this report can serve as a blueprint for teams interested in bringing this capability to their

development process today. With the right safeguards and iterative improvements, AI-generated tests can

become as trustworthy as handwritten ones – and a lot faster to produce.

Sources:

1. Salesforce Developers – Apex Test Case Generation (Agentforce)(Source: developer.salesforce.com)

(Source: developer.salesforce.com)

2. Salesforce Developer Blog – Vernon Keenan, How To Use ChatGPT for Salesforce Generative

Coding(Source: salesforcedevops.net)(Source: salesforcedevops.net)

3. Salesforce Ben – What Are Salesforce Governor Limits?(Source: salesforceben.com)

4. Diffblue Post – Zoe Laycock, Why Deterministic Test Generation Is Important(Source: diffblue.com)

(Source: diffblue.com) (Source: diffblue.com)

5. Beyond the Cloud Blog – Piotr Gajek, Apex Test Data Factory(Source: blog.beyondthecloud.dev)(Source:

blog.beyondthecloud.dev)

6. SoftServe Blog – Speed up Unit Tests using Stub API (on avoiding DML in tests) (Source:

softserveinc.com)(Source: softserveinc.com)

7. Salesforce StackExchange – Do we get new governor limits in test classes for each test method?(Source:

salesforce.stackexchange.com) (accessed via search)

8. Salesforce Developers Documentation – Isolation of Test Data from Org Data(Source:

levelupsalesforce.com) (via summary)

9. Reddit – Custom GPT for Salesforce: Apex Test Class Generator (user discussion) (Source: reddit.com)

(indirect reference)

Automating Apex Test Data Generation Using AI Models

Page 22 of 24

https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=,80
https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-apextestcasegen.html#:~:text=This%20is%20a%20list%20of,Developers%2C%20check%20our%20github%20repo
https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-apextestcasegen.html#:~:text=Unit%20tests%20must%20cover%20at,generation%20is%20enabled%20by%20default
https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=the%20best%20unit%20testing%20patterns%2C,then%20we%20start%20making%20factories
https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=But%20there%20is%20something%20different,industry%20AI%20systems%20obsolete
https://www.salesforceben.com/what-are-salesforce-governor-limits-best-practices-examples/#:~:text=1,Exercise%201
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=In%20recent%20years%2C%20large%20language,readable%20prompts
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=This%20variability%20can%20lead%20to,several%20significant%20problems
https://www.diffblue.com/resources/deterministic-test-generation/#:~:text=What%20Is%20Deterministic%20Test%20Generation%3F
https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=The%20most%20problematic%20part%20of,can%20stuck%20in%20your%20%40testSetup
https://blog.beyondthecloud.dev/blog/apex-test-data-factory#:~:text=,only%20in%20a%20specific%20factory
https://www.softserveinc.com/en-us/blog/speed-up-your-unit-test-using-stub-api#:~:text=be%20created
https://www.softserveinc.com/en-us/blog/speed-up-your-unit-test-using-stub-api#:~:text=public%20static%20Object%20createMock,
https://salesforce.stackexchange.com/questions/297489/do-we-get-new-governor-limits-in-test-classes-for-each-test-method#:~:text=method%3F%20salesforce,aggregated%20with%20limits%20outside
https://www.levelupsalesforce.com/apex-test-class-best-practices#:~:text=LevelUpSalesforce%20www,not%20affected%20by%20the
https://www.reddit.com/r/salesforce/comments/17tjar9/custom_gpt_for_salesforce_the_complete_apex_test/#:~:text=Custom%20GPT%20for%20Salesforce%3A%20The,classes%20for%20your%20Apex%20code
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

10. SalesforceDevops.net – Generative Coding Takes Off(Source: salesforcedevops.net) (AI limitations and

privacy)

Tags: salesforce, apex, apex unit testing, ai, large language models, code generation, test data automation

About Cirra

About Cirra AI

Cirra AI is a specialist software company dedicated to reinventing Salesforce administration and delivery through

autonomous, domain-specific AI agents. From its headquarters in the heart of Silicon Valley, the team has built the

Cirra Change Agent platform—an intelligent copilot that plans, executes, and documents multi-step Salesforce

configuration tasks from a single plain-language prompt. The product combines a large-language-model reasoning

core with deep Salesforce-metadata intelligence, giving revenue-operations and consulting teams the ability to

implement high-impact changes in minutes instead of days while maintaining full governance and audit trails.

Cirra AI’s mission is to “let humans focus on design and strategy while software handles the clicks.” To achieve

that, the company develops a family of agentic services that slot into every phase of the change-management

lifecycle:

Requirements capture & solution design – a conversational assistant that translates business requirements

into technically valid design blueprints.

Automated configuration & deployment – the Change Agent executes the blueprint across sandboxes and

production, generating test data and rollback plans along the way.

Continuous compliance & optimisation – built-in scanners surface unused fields, mis-configured sharing

models, and technical-debt hot-spots, with one-click remediation suggestions.

Partner enablement programme – a lightweight SDK and revenue-share model that lets Salesforce SIs embed

Cirra agents inside their own delivery toolchains.

This agent-driven approach addresses three chronic pain points in the Salesforce ecosystem: (1) the high cost of

manual administration, (2) the backlog created by scarce expert capacity, and (3) the operational risk of unscripted,

undocumented changes. Early adopter studies show time-on-task reductions of 70-90 percent for routine

configuration work and a measurable drop in post-deployment defects.

Leadership

Cirra AI was co-founded in 2024 by Jelle van Geuns, a Dutch-born engineer, serial entrepreneur, and 10-year

Salesforce-ecosystem veteran. Before Cirra, Jelle bootstrapped Decisions on Demand, an AppExchange ISV whose

rules-based lead-routing engine is used by multiple Fortune 500 companies. Under his stewardship the firm reached

seven-figure ARR without external funding, demonstrating a knack for pairing deep technical innovation with

pragmatic go-to-market execution.

Jelle began his career at ILOG (later IBM), where he managed global solution-delivery teams and honed his expertise

in enterprise optimisation and AI-driven decisioning. He holds an M.Sc. in Computer Science from Delft University of

Technology and has lectured widely on low-code automation, AI safety, and DevOps for SaaS platforms. A frequent

Automating Apex Test Data Generation Using AI Models

Page 23 of 24

https://salesforcedevops.net/index.php/2023/05/10/how-to-use-chatgpt-for-salesforce-generative-coding/#:~:text=However%2C%20it%E2%80%99s%20essential%20to%20remember,strengths%20and%20mitigating%20its%20limitations
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

podcast guest and conference speaker, he is recognised for advocating “human-in-the-loop autonomy”—the principle

that AI should accelerate experts, not replace them.

Why Cirra AI matters

Deep vertical focus – Unlike horizontal GPT plug-ins, Cirra’s models are fine-tuned on billions of anonymised

metadata relationships and declarative patterns unique to Salesforce. The result is context-aware guidance that

respects org-specific constraints, naming conventions, and compliance rules out-of-the-box.

Enterprise-grade architecture – The platform is built on a zero-trust design, with isolated execution

sandboxes, encrypted transient memory, and SOC 2-compliant audit logging—a critical requirement for

regulated industries adopting generative AI.

Partner-centric ecosystem – Consulting firms leverage Cirra to scale senior architect expertise across junior

delivery teams, unlocking new fixed-fee service lines without increasing headcount.

Road-map acceleration – By eliminating up to 80 percent of clickwork, customers can redirect scarce admin

capacity toward strategic initiatives such as Revenue Cloud migrations, CPQ refactors, or data-model

rationalisation.

Future outlook

Cirra AI continues to expand its agent portfolio with domain packs for Industries Cloud, Flow Orchestration, and

MuleSoft automation, while an open API (beta) will let ISVs invoke the same reasoning engine inside custom UX

extensions. Strategic partnerships with leading SIs, tooling vendors, and academic AI-safety labs position the

company to become the de-facto orchestration layer for safe, large-scale change management across the Salesforce

universe. By combining rigorous engineering, relentlessly customer-centric design, and a clear ethical stance on AI

governance, Cirra AI is charting a pragmatic path toward an autonomous yet accountable future for enterprise SaaS

operations.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the accuracy,

completeness, or reliability of its contents. Any use of this information is at your own risk. Cirra shall not be liable for any

damages arising from the use of this document. This content may include material generated with assistance from artificial

intelligence tools, which may contain errors or inaccuracies. Readers should verify critical information independently. All product

names, trademarks, and registered trademarks mentioned are property of their respective owners and are used for identification

purposes only. Use of these names does not imply endorsement. This document does not constitute professional or legal advice.

For specific guidance related to your needs, please consult qualified professionals.

Automating Apex Test Data Generation Using AI Models

Page 24 of 24

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/ai-apex-test-data-generation

