
Building and Deploying a TypeScript MCP Server
on Heroku
Published July 31, 2025 20 min read

Hosting a Custom MCP Server on Heroku in 30
Minutes
Authorʼs Note: This guide walks through creating and deploying a Model Context Protocol (MCP)

server with TypeScript and Node.js, and integrating it with Salesforce Agentforce via Heroku AppLink.

Weʼll cover project setup, development vs. production configurations, implementing basic MCP handlers

(tools), deploying to Heroku, and ensuring enterprise-grade security, scaling, and troubleshooting. The

goal is a professional, production-ready deployment – all in about 30 minutes of work.

Building and Deploying a TypeScript MCP Server on Heroku

Page 1 of 14

https://cirra.ai/articles/model-context-protocol-ai-tool-integration
https://cirra.ai/articles/salesforce-agentforce-ai-agents
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

1. Project Scaffolding: TypeScript MCP Server Setup

Before coding, scaffold your Node.js/TypeScript project and include the MCP SDK and other

dependencies:

Initialize the Node project: Create a project directory and run npm init -y to generate a basic

package.json (Source: freecodecamp.org). Ensure your package.json has "type": "module"

(so Node can use ES module imports).

Install MCP SDK and basics: Add the official MCP TypeScript SDK and related libraries. For

example:

npm install @modelcontextprotocol/sdk express zod dotenv

This installs the MCP server/client SDK (Source: freecodecamp.org), Express (for HTTP server), Zod

(for input schema validation), and dotenv (for local environment config).

Project structure: For simplicity, start with a single file server (e.g. src/index.ts). In our example,

all code lives in one file for brevity (Source: freecodecamp.org), but you can organize into multiple

modules as needed (e.g. a tools/ directory for tool handlers, etc.). Create a tsconfig.json to

compile to ES2019 (or later) and output to a dist/ folder for production.

TypeScript configuration: Ensure TypeScript is set up for Node. For example, a minimal

tsconfig.json might include:

{

 "compilerOptions": {

 "target": "ES2020",

 "module": "ESNext",

 "moduleResolution": "Node",

 "outDir": "dist",

 "esModuleInterop": true

 },

 "include": ["src"]

}

This compiles modern JS, uses ES modules, and outputs build files to dist/ .

Building and Deploying a TypeScript MCP Server on Heroku

Page 2 of 14

https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=,MCP%20package
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=My%20project%20is%20a%20Node,written%20inside%20that%20one%20file
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

Environment variables: Create a .env file for sensitive configs (like API keys) during development

(Source: freecodecamp.org). For example, if your MCP server will call external APIs (Google, etc.),

put keys in .env and load them via dotenv in development. (Weʼll configure these vars on Heroku

in production.)

By the end of this step, you have a Node.js project with TypeScript ready, and the MCP SDK installed.

Next, weʼll implement the MCP server code.

2. Development vs. Production Environment Setup

During development, you can run the TypeScript server directly, but in production weʼll compile to

JavaScript for efficiency:

Development workflow: Use ts-node or a build watcher for quick iteration. For example, add a

npm script for development: "dev": "ts-node src/index.ts" . You can use nodemon for auto-

reload during development. This lets you run the TS code without a manual compile step.

Production build: Itʼs not recommended to use ts-node in production (Source:

stackoverflow.com)(Source: stackoverflow.com). Instead, compile your TypeScript to JavaScript. Add

a build script (e.g. "build": "tsc") and a start script to run the compiled code (e.g. "start":

"node dist/index.js"). After development, run npm run build to produce dist/index.js and

use npm start to launch. This avoids on-the-fly transpilation overhead and aligns with Heroku best

practices (Source: stackoverflow.com).

Scripts and dependencies: Make sure any necessary runtime dependencies (like ts-node or

TypeScript) are properly classified. If you choose to run TS directly in Heroku (quick and dirty

approach), include ts-node in the dependencies (not just devDependencies) and set the start

script accordingly (Source: stackoverflow.com). However, the recommended approach is to

compile first – yielding faster startup and execution.

Setting up these scripts prepares your app for both local iteration and Heroku deployment. Now, letʼs

write the actual MCP server code and define a basic tool/handler.

3. Implementing Basic MCP Protocol Handlers (Tools)

In MCP, tools are the functions (actions) your AI agent can invoke on the server (Source:

freecodecamp.org). Weʼll create a simple MCP server with one or two tools to illustrate the pattern:

Building and Deploying a TypeScript MCP Server on Heroku

Page 3 of 14

https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=Here%2C%20you%20can%20see%20that,the%20following%20inside%20that%20file
https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138#:~:text=You%20can%27t%20deploy%20%60ts,p%20.%60%20on%20publish
https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138
https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138#:~:text=You%20can%27t%20deploy%20%60ts,p%20.%60%20on%20publish
https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138#:~:text=18
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=,function
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

Import and instantiate MCP server: In src/index.ts , import the McpServer from the SDK. For

example:

import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";

import { StreamableHTTPServerTransport } from "@modelcontextprotocol/sdk/server/stre

import { z } from "zod";

import express from "express";

import cors from "cors";

import dotenv from "dotenv";

dotenv.config();

const server = new McpServer({ name: "My Custom MCP", version: "1.0.0" });

The McpServer is the core of your MCP implementation – it manages connections, protocol

compliance, and routing of messages (Source: github.com). We name the server and set a semantic

version.

Define MCP tools: Use server.tool(name, schema, handler) to register functions. For example,

letʼs add a simple tool that echoes a greeting, and one that adds two numbers:

typescript

Copy

server.tool("greetUser", { name: z.string() }, // input validation schema async ({

name }) => { return { content: [{ type: "text", text: `Hello, ${name}!` }] }; });

server.tool("addNumbers", { a: z.number(), b: z.number() }, async ({ a, b }) => {

const sum = a + b; return { content: [{ type: "text", text: `Sum is ${sum}` }] }; }

);

Explanation: We give each tool a meaningful name (e.g. "greetUser"), define input parameters

with Zod schemas, and provide an async handler function (Source: freecodecamp.org). The handler

returns a response object following MCPʼs structured format (here simply returning text content). In a

real scenario, tools might fetch data from an API or database. For instance, an MCP server could

integrate with Google Calendar (Source: freecodecamp.org)(Source: freecodecamp.org) or a

database to retrieve info, and return it as structured content for the AI to consume.

Initialize server transport (HTTP): To allow clients (e.g. Agentforce or an AI IDE) to connect, our

MCP server must listen on an endpoint. We use Express and the MCP Streamable HTTP transport

for a web-accessible server. For example:

Building and Deploying a TypeScript MCP Server on Heroku

Page 4 of 14

https://github.com/modelcontextprotocol/typescript-sdk#:~:text=match%20at%20L420%20The%20McpServer,protocol%20compliance%2C%20and%20message%20routing
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=Tools%20are%20the%20functions%20your,SDK%20and%20passed%20three%20things
https://cirra.ai/articles/salesforce-mcp-servers-technical-guide
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=Now%20let%E2%80%99s%20write%20the%20function,API%20Public%20Key%20for%20authentication
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=Now%20it%E2%80%99s%20time%20to%20fetch,pass%20necessary%20options%20to%20it
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

const app = express();

app.use(express.json()); // Enable CORS for specific origins or all, exposing the MC

In the above setup, we create an Express app and a single /mcp route that handles MCP JSON-RPC

requests (POST for requests, GET for SSE stream, DELETE to close) (Source: github.com)(Source:

github.com). We maintain a map of transports for active sessions. When an AI client first connects

(sends an initialize call), we create a new StreamableHTTPServerTransport , attach our

McpServer to it, and store it. Subsequent requests with the same Mcp-Session-Id header are

routed to the existing session transport (Source: github.com)(Source: github.com). This allows the

client (e.g. Agentforce or Claude) to maintain a continuous session with our server over HTTP/SSE.

We also enable CORS and explicitly expose the Mcp-Session-Id header, which is required for

browser-based MCP clients to work properly (Source: github.com)(Source: github.com)

(Agentforce uses server-to-server calls, so CORS is less a concern there, but during testing with web

UIs it matters).

Port and server startup: Finally, start the Express server:

typescript

Copy

const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(`✅ MCP

server listening on port ${PORT}`); });

We bind to the port from environment. Heroku will supply a port via the PORT env var at runtime,

which your app must use (Source: devcenter.heroku.com). (Locally, we default to 3000 for

convenience.)

At this point, we have a functional MCP server with basic tools. You can test it locally using an MCP client

(for example, Anthropicʼs Claude or the MCP Inspector tool). For instance, using the open-source MCP

Inspector utility is helpful: run npx @modelcontextprotocol/inspector , open the UI, and connect to

http://localhost:3000/mcp with transport type “HTTP” or “SSE” to invoke your tools. Once satisfied,

weʼll prepare to deploy this to Heroku.

Building and Deploying a TypeScript MCP Server on Heroku

Page 5 of 14

https://github.com/modelcontextprotocol/typescript-sdk#:~:text=app.post%28%27%2Fmcp%27%2C%20async%20%28req%2C%20res%29%20%3D,undefined%3B%20let%20transport%3A%20StreamableHTTPServerTransport
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=%2F%2F%20Handle%20GET%20requests%20for,get%28%27%2Fmcp%27%2C%20handleSessionRequest
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=const%20sessionId%20%3D%20req.headers%5B%27mcp,undefined%3B%20let%20transport%3A%20StreamableHTTPServerTransport
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=,disabled%20by%20default%20for%20backwards
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=If%20you%27d%20like%20your%20server,browser%20clients%20to%20access%20it
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=,session%20ID%20from%20initialization%20responses
https://devcenter.heroku.com/articles/runtime-principles#:~:text=On%20Heroku%2C%20apps%20are%20completely,environment%20variable
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

4. Deploying the MCP Server to Heroku (CLI, Dynos, Env Vars,

Logs)

Deploying a Node.js app to Heroku is straightforward. Letʼs assume you have a Heroku account and the

Heroku CLI installed:

Login and create app: Log in with heroku login . Then from your project directory, create a Heroku

app:

heroku create

This creates an app (with a random name if not specified) and a Git remote URL (Source:

devcenter.heroku.com). For example, you might see: Creating app... done, ⬢ my-mcp-app

https://my-mcp-app.herokuapp.com/.

Set buildpack for Node.js: Heroku auto-detects Node.js via the package.json . Ensure your repo is

a git repo and commit your code. If you used the standard Node buildpack, no manual action is

needed (itʼs automatic on push). If you plan to use Heroku AppLinkʼs service mesh (discussed in the

next section), you will add an extra buildpack, but for a basic deployment we start simple.

Configure environment variables: Any secrets or config (like API keys, etc. that you had in .env)

should be set in Herokuʼs config vars. Run heroku config:set KEY=value for each variable

(Source: devcenter.heroku.com). For example, to set a Google API key:

heroku config:set GOOGLE_PUBLIC_API_KEY=your_key_here heroku config:set CALENDAR_ID=

These will be available as process.env.GOOGLE_PUBLIC_API_KEY in your app.

Procfile (dyno configuration): Create a file named Procfile in the project root to declare how to

run the app. Since our app is a web server, define a web process. For example:

arduino

Copy

web: npm run start

Building and Deploying a TypeScript MCP Server on Heroku

Page 6 of 14

https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=To%20prepare%20Heroku%20to%20receive,source%20code%2C%20create%20an%20app
https://my-mcp-app.herokuapp.com/
https://devcenter.heroku.com/articles/config-vars#:~:text=%24%20heroku%20config%3Aset%20GITHUB_USERNAME%3Djoesmith%20Adding,variables%20using%20the%20ENV
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

This tells Heroku to execute npm run start (which runs our compiled dist/index.js) in a web

dyno. Itʼs important the process listens on $PORT (which we handled in code). The Procfile isnʼt

strictly required if you have a start script, but itʼs good practice to be explicit (Source:

stackoverflow.com). If using the AppLink service mesh buildpack later, the Procfile may include a

special command (more on that shortly).

Deploy via Git: Push the code to Herokuʼs Git remote:

git add . git commit -m "Deploy MCP server" git push heroku main

Heroku will build the app (running npm install , npm run build if you specified a build step, etc.)

and release it. On success, you can run heroku ps to see the dyno running and heroku open to

open the app URL. (Our MCP server doesnʼt serve a web page, but the endpoint /mcp is ready for

agent connections.)

Logging and monitoring: Use heroku logs --tail to stream logs from the app in real-time

(Source: devcenter.heroku.com). This is crucial for debugging issues (e.g., if the app crashes on

startup or when a request comes in). Herokuʼs logging will show console output, including our

startup message and any errors or console.log from tool handlers. For deeper debugging, you can

also run heroku run bash to get a shell in the dyno for inspection.

At this stage, your custom MCP server is live on Heroku, accessible at https://<your-

app>.herokuapp.com/mcp . You could connect an AI client (like Claude or a custom MCP client) to this

URL (it supports HTTP+SSE MCP protocol). Next, weʼll integrate this with Agentforce using Heroku

AppLink for enterprise governance and security.

5. Integrating the MCP Server with Agentforce via Heroku

AppLink

Salesforceʼs Agentforce allows enterprise AI agents to perform actions securely. With Agentforce 3.0,

Salesforce introduced native MCP support, and Herokuʼs AppLink feature lets you connect external

services (like your MCP server) to Agentforce in a governed, secure way (Source: salesforceben.com).

Hereʼs how to integrate our deployed MCP server:

Heroku AppLink overview: Heroku AppLink is an add-on that exposes Heroku apps as API services

inside Salesforce (including Agentforce) (Source: devcenter.heroku.com)(Source:

devcenter.heroku.com). When you attach AppLink to your app, it handles authentication,

Building and Deploying a TypeScript MCP Server on Heroku

Page 7 of 14

https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138#:~:text=18
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Logging
https://www.salesforceben.com/salesforce-announces-agentforce-3-0-command-center-mcp-and-apps/#:~:text=easy%20to%20build%20and%20manage,enterprise%20permissions%20and%20data%20boundaries
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Heroku%20AppLink%20,data%20and%20using%20Heroku%20SDKs
https://devcenter.heroku.com/articles/heroku-applink#:~:text=,within%20Salesforce%20when%20executing%20operations
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

authorization, and connectivity between Salesforce and your Heroku app. In practice, AppLink will

ensure that only trusted Salesforce orgs (that you connect) can call your MCP endpoints, and it can

auto-generate Agentforce Actions from your API definitions.

Provision AppLink on your app: Use the Heroku CLI to add the AppLink add-on to your Heroku app.

For example:

heroku addons:create heroku-applink

(Ensure you meet any requirements, e.g. certain dyno types or a verified Heroku account (Source:

devcenter.heroku.com).) This attaches the AppLink service to your app. You should also install the

Heroku AppLink CLI plugin: heroku plugins:install @heroku-cli/plugin-applink (Source:

devcenter.heroku.com), which gives you commands to connect to Salesforce.

Attach Salesforce org and publish API: Youʼll need a Salesforce org with Agentforce enabled (a

Developer Edition or sandbox with Agentforce) (Source: devcenter.heroku.com). Using the AppLink

CLI, connect your Heroku app to Salesforce. For example:

heroku salesforce:connect -a your-heroku-app # connects a Salesforce org (you'll log

The connect step authorizes a Salesforce org to your Heroku app (establishing the trust). The

publish step registers your appʼs API with Salesforce, making it discoverable. Under the hood, this

uses an OpenAPI specification file in your app (if present) to define the actions.

Provide an OpenAPI spec for your MCP endpoints: To integrate nicely, you should describe your

MCP serverʼs API in an OpenAPI 3.0 spec (YAML/JSON). This spec acts as a contract that Salesforce

reads to generate External Services and Agentforce Custom Actions(Source: heroku.com). In our

case, the API is basically one endpoint (/mcp) that accepts a generic MCP request. However, the

more meaningful integration is to define specific actions/tools in the spec. For example, you could

define an endpoint for each tool (like /mcp/tools/greetUser or similar) in the spec purely for

documentation/integration purposes. Salesforceʼs AppLink uses the OpenAPI and special extensions

(x-sfdc fields) to automatically create corresponding Agentforce actions and map Salesforce

permission sets to them (Source: heroku.com).

In the Getting Started with Heroku AppLink and Agentforce guide, a sample api-spec.yaml is

provided (Source: devcenter.heroku.com). Adapting that to our scenario, youʼd list operations

corresponding to your MCP tools, and mark them as Agentforce actions. Once this spec is in your

repo (and committed), running heroku salesforce:publish will register those endpoints.

Salesforce administrators can then see these as available actions.

Building and Deploying a TypeScript MCP Server on Heroku

Page 8 of 14

https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=,work%20with%20your%20Salesforce%20org
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=To%20install%20the%20plugin%2C%20run,the%20CLI%20command
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=,work%20with%20your%20Salesforce%20org
https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=supported%20but%20must%20use%20the,writing%20%E2%80%93%20check%20Salesforce%20External
https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=supported%20but%20must%20use%20the,writing%20%E2%80%93%20check%20Salesforce%20External
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=This%20Git%20repository%20contains%20a,app%20with%20the%20following%20structure
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

Apply the AppLink buildpack (service mesh): Crucial for security, the AppLink Service Mesh

buildpack must be added to your app before the Node buildpack. This injects a proxy in front of your

app to enforce Salesforce auth. Add it by running:

heroku buildpacks:add --index 1 heroku/applink-service-mesh

Then redeploy (git push heroku main again). The service mesh will require that incoming

requests present valid Salesforce-signed JWT tokens and originate from your connected org. It

blocks any external access not coming through Salesforce channels (Source: heroku.com).

Essentially, after this, your Heroku app will only serve requests from Agentforce (or other Salesforce

flows you connected), preventing direct abuse of your /mcp endpoint. This addresses enterprise

governance: you get fine-grained control via Salesforce over who/what can invoke the tools.

Enterprise governance via Agentforce: Once published, your MCP serverʼs tools become

Agentforce Actions within your Salesforce org. Admins can assign these actions to Agentforce

agents, include them in Agentforce policies, and restrict their usage with Salesforceʼs permission

sets. Agentforceʼs governed gateway will list your custom tool actions and allow enabling or disabling

them per agent (Source: salesforceben.com). All calls from Agentforce carry the user context and

adhere to the mode (User mode, etc.) configured in AppLink (Source: devcenter.heroku.com). For

example, if AppLink is in user-plus mode, the action runs with the invoking userʼs permissions plus

optional elevated rights defined by you (Source: devcenter.heroku.com). This ensures any data

access or changes done by your MCP tool comply with Salesforce security and role policies.

Testing the integration: In Salesforceʼs Agentforce interface, you should now see the custom action

corresponding to your MCP server (if configured via OpenAPI). For instance, “greetUser” might

appear as an action that can be invoked by an agent. You can create an Agentforce agent (via Prompt

Builder or Agent Builder) that uses this action. When triggered, Agentforce will call your Heroku MCP

server (through AppLinkʼs secure channel), your server will execute the tool, and the result will return

to the agent. Monitor your Heroku logs during a test run to see the interaction (the logs should show

an incoming POST to /mcp with the JSON request).

Using Heroku AppLink in this way gives you the best of both worlds: the flexibility of a custom

Node/TypeScript service and the governance and scalability of the Salesforce platform. Salesforceʼs

documentation emphasizes that developers can “spin up and expose custom MCP services using Heroku,

offering a fast, secure, and scalable way to connect bespoke tools to Agentforce” (Source:

salesforceben.com).

Building and Deploying a TypeScript MCP Server on Heroku

Page 9 of 14

https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=,Flow%2C%20Apex%2C%20or%20Agentforce%20integration
https://www.salesforceben.com/salesforce-announces-agentforce-3-0-command-center-mcp-and-apps/#:~:text=,grade%20security%20and%20compliance%20standards
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Heroku%20AppLink%20authenticates%20and%20authorizes,requests%20for%20validation%20and%20capabilities
https://devcenter.heroku.com/articles/heroku-applink#:~:text=User%20Modes
https://www.salesforceben.com/salesforce-announces-agentforce-3-0-command-center-mcp-and-apps/#:~:text=easy%20to%20build%20and%20manage,enterprise%20permissions%20and%20data%20boundaries
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

6. Security, Scaling, and Troubleshooting Considerations

Finally, letʼs address some important operational aspects:

Security best practices: By default, our MCP server has no authentication on its own. If you deploy

it without AppLink, anyone with the URL could attempt to use it, so youʼd want to implement auth

(e.g. an API key or allowlist). However, using Heroku AppLinkʼs service mesh mitigates this by only

allowing verified Salesforce traffic (Source: heroku.com). The service mesh handles OAuth and token

verification, so you donʼt need to add custom auth checks for Agentforce – those are handled for

you. Still, you should treat your Heroku app like any production service: keep dependencies updated,

handle errors to avoid leaking info, and use HTTPS (Heroku provides SSL by default on

*.herokuapp.com domains). If your MCP server calls external APIs, never hard-code secrets – use

config vars and the Heroku secure config store. Also consider enabling Herokuʼs web application

firewall or IP restrictions if necessary (though AppLinkʼs mesh will already restrict traffic drastically).

Environment and configuration management: In enterprise settings, you might have multiple

Salesforce orgs (dev, test, prod) and corresponding Heroku apps. Heroku AppLink supports

connecting multiple orgs and even multiple Heroku apps to the same add-on for flexibility (Source:

devcenter.heroku.com)(Source: devcenter.heroku.com). Manage your config vars per environment

(e.g., use Heroku Pipelines with staging/production apps and config variables, or the CLI to set vars

for each app).

Scaling and performance: Our MCP server can be scaled horizontally on Heroku by increasing the

number of web dynos (heroku ps:scale web=2 for two dynos, etc.). Thanks to Herokuʼs stateless

process model, adding more dynos can handle more concurrent Agentforce requests easily (Source:

devcenter.heroku.com)(Source: devcenter.heroku.com). However, note that if you use the stateful

session approach (like we did with session IDs stored in-memory), a given session will “stick” to the

dyno that created it. In a multi-dyno scenario, Agentforceʼs subsequent requests might hit a different

dyno that doesnʼt know the session. To avoid this, you could use a shared session store or implement

the stateless mode from the MCP SDK (where each request is independent) (Source: github.com)

(Source: github.com). Stateless mode may be simpler for scaling at the cost of re-initializing the

server for each request (which, depending on your serverʼs startup time, might be acceptable). In

practice, Agentforce calls to tools are short-lived, so stateless operation can work well behind the

scenes – Heroku can even spin up one-off dynos per request if using their Managed Inference API.

For most use-cases, a single standard dyno can handle quite a few requests (MCP JSON exchanges

are lightweight), so scale out as needed after monitoring.

Logging and monitoring: We already mentioned heroku logs . For more advanced monitoring,

consider add-ons like Papertrail or Datadog for log aggregation. Additionally, the Heroku AppLink

Dashboard (accessible via heroku addons:open heroku-applink) provides a UI to monitor

Building and Deploying a TypeScript MCP Server on Heroku

Page 10 of 14

https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=,Flow%2C%20Apex%2C%20or%20Agentforce%20integration
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=Basic%20dynos%20%20for%20,work%20with%20your%20Salesforce%20org
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=Create%20a%20local%20copy%20of,local%20command%20shell%20or%20terminal
https://devcenter.heroku.com/articles/runtime-principles#:~:text=Processes%20are%20stateless%20and%20share,backing%20service%2C%20typically%20a%20database
https://devcenter.heroku.com/articles/runtime-principles#:~:text=This%20process%20model%20truly%20shines,a%20simple%20and%20reliable%20operation
https://github.com/modelcontextprotocol/typescript-sdk
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=try%20,close
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

connections, authorizations, and publications of your AppLink integration (Source: heroku.com).

Salesforceʼs Agentforce Command Center will also show metrics on agent action usage and

performance. Use these tools to monitor that your MCP server is being invoked as expected and to

troubleshoot any errors in execution. If something goes wrong on the Salesforce side (e.g., a

permission issue), the Agentforce logs or Flow errors will indicate it. Common issues include missing

permission sets (which can be solved by adjusting the user mode or permission mapping in the

OpenAPI spec), or forgetting to add the buildpack (leading to unauthorized access attempts).

Common errors and solutions: If your Heroku app isnʼt responding, ensure it bound to the correct

PORT (remember, Heroku sets PORT env var at runtime; using a hardcoded port will cause the app

to crash on start) (Source: devcenter.heroku.com). If you see an Error: address already in use

or similar, you might have hardcoded a port or started multiple servers. If Agentforce calls arenʼt

reaching your app, check that the app is published and the Salesforce org is connected (run heroku

applink:connections -a your-app to list connected orgs). Also confirm the Agentforce agent has

the action enabled and that the buildpack was added (without it, external calls might be blocked or

not authenticated). Herokuʼs AppLink logs can be viewed with the same heroku logs command –

AppLink will log authentication events or errors there (Source: devcenter.heroku.com). The Heroku

Dev Center provides a “AppLink Logging and Common Errors” document with specific

troubleshooting steps for issues like missing JWT, incorrect OpenAPI spec, etc. (Source:

devcenter.heroku.com).

Future considerations: As the MCP and Agentforce ecosystem evolves, keep your MCP server

updated. The MCP SDK is under active development (e.g., new protocol features or security patches)

– track the official repository (Source: github.com). Additionally, Salesforce might introduce new

integration features; for instance, MuleSoft can convert APIs into MCP services automatically

(Source: salesforceben.com), which could complement your custom server. Always follow

Salesforceʼs security review guidelines if your MCP server will be offered through the

AgentExchange marketplace in the future.

Figure: High-level MCP architecture – an AI Host (e.g. Agentforce or an AI IDE) connects via MCP to a

custom MCP Server (your Heroku app). The MCP server interfaces with external data sources (APIs,

databases, etc.) and returns structured data (context) to the host (Source: freecodecamp.org). In our

deployment, Agentforce acts as the host with an integrated MCP client, calling our server through a

secure channel.

In summary, hosting a custom MCP server on Heroku combines familiar Node.js development with

cutting-edge AI integration. We scaffolded a TypeScript project, wrote MCP handlers (“tools”), and set

up a Node/Express server to handle MCP requests. We then deployed it on Heroku within minutes, using

standard CLI workflows (Source: github.com). By leveraging Heroku AppLink, we integrated the service

into Salesforceʼs Agentforce with enterprise-level security – Heroku acts as the bridge, enforcing OAuth

Building and Deploying a TypeScript MCP Server on Heroku

Page 11 of 14

https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=Dashboard%20Functions%20as%20the%20centralized,as
https://devcenter.heroku.com/articles/runtime-principles#:~:text=On%20Heroku%2C%20apps%20are%20completely,environment%20variable
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Logging
https://devcenter.heroku.com/articles/heroku-applink#:~:text=You%20can%20view%20AppLink%20logs,information%20and%20common%20AppLink%20errors
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=The%20official%20TypeScript%20SDK%20for,Context%20Protocol%20servers%20and%20clients
https://www.salesforceben.com/salesforce-announces-agentforce-3-0-command-center-mcp-and-apps/#:~:text=The%20MCP%20will%20also%20enable,you%20to
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=We%20have%20a%20host%20%E2%80%93,calendars%2C%20databases%2C%20and%20so%20on
https://github.com/heroku/typescript-getting-started#:~:text=Deploying%20to%20Heroku
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

and org-level permissions (Source: heroku.com)(Source: devcenter.heroku.com). With this setup,

professional developers can deliver custom AI tool integrations rapidly, while satisfying their

organizationʼs governance requirements. Happy coding, and may your MCP servers empower your AI

agents safely and effectively!

Sources:

Sumit Saha, “How to Build a Custom MCP Server with TypeScript – A Handbook for Developers,”

freeCodeCamp (June 25, 2025) (Source: freecodecamp.org)(Source: freecodecamp.org) (Source:

github.com).

Model Context Protocol TypeScript SDK – GitHub README (Source: github.com)(Source:

github.com) (Source: github.com).

Heroku Dev Center, “Getting Started with Heroku AppLink and Agentforce” (July 2025) (Source:

devcenter.heroku.com)(Source: devcenter.heroku.com); “Heroku AppLink” article (Source:

devcenter.heroku.com)(Source: devcenter.heroku.com).

Salesforce Ben, “Salesforce Announces Agentforce 3.0 – Command Center, MCP, and Apps” (June

23, 2025) (Source: salesforceben.com)(Source: salesforceben.com).

Heroku Blog, “Heroku AppLink: Extend Salesforce with Any Programming Language” by Vivek

Viswanathan & Kim Harrison (July 17, 2025) (Source: heroku.com)(Source: heroku.com).

Heroku Dev Center, “Runtime Principles” (Dec 03, 2024) – on binding to PORT (Source:

devcenter.heroku.com).

Stack Overflow – discussions on deploying TypeScript apps to Heroku (on using ts-node vs.

compiling) (Source: stackoverflow.com)(Source: stackoverflow.com).

Heroku Dev Center – “Configuration and Config Vars” (retrieved 2025) (Source:

devcenter.heroku.com) and Heroku CLI documentation.

Heroku Dev Center – “Working with MCP on Heroku” (2025) (Source: devcenter.heroku.com). (For

advanced use with Herokuʼs Managed Inference).

Tags: typescript, node.js, heroku, deployment, mcp, model context protocol, server development, salesforce

About Cirra

Building and Deploying a TypeScript MCP Server on Heroku

Page 12 of 14

https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=,Flow%2C%20Apex%2C%20or%20Agentforce%20integration
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Heroku%20AppLink%20authenticates%20and%20authorizes,requests%20for%20validation%20and%20capabilities
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=My%20project%20is%20a%20Node,written%20inside%20that%20one%20file
https://www.freecodecamp.org/news/how-to-build-a-custom-mcp-server-with-typescript-a-handbook-for-developers/#:~:text=,function
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=const%20server%20%3D%20new%20McpServer%28,server%22%2C%20version%3A%20%221.0.0%22
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=match%20at%20L420%20The%20McpServer,protocol%20compliance%2C%20and%20message%20routing
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=app.post%28%27%2Fmcp%27%2C%20async%20%28req%2C%20res%29%20%3D,undefined%3B%20let%20transport%3A%20StreamableHTTPServerTransport
https://github.com/modelcontextprotocol/typescript-sdk#:~:text=If%20you%27d%20like%20your%20server,browser%20clients%20to%20access%20it
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=To%20prepare%20Heroku%20to%20receive,source%20code%2C%20create%20an%20app
https://devcenter.heroku.com/articles/getting-started-heroku-applink-agentforce#:~:text=This%20Git%20repository%20contains%20a,app%20with%20the%20following%20structure
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Heroku%20AppLink%20provides%3A
https://devcenter.heroku.com/articles/heroku-applink#:~:text=Heroku%20AppLink%20authenticates%20and%20authorizes,requests%20for%20validation%20and%20capabilities
https://www.salesforceben.com/salesforce-announces-agentforce-3-0-command-center-mcp-and-apps/#:~:text=easy%20to%20build%20and%20manage,enterprise%20permissions%20and%20data%20boundaries
https://www.salesforceben.com/salesforce-announces-agentforce-3-0-command-center-mcp-and-apps/#:~:text=,grade%20security%20and%20compliance%20standards
https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=,Flow%2C%20Apex%2C%20or%20Agentforce%20integration
https://www.heroku.com/blog/applink-extend-salesforce-with-any-programming-language/#:~:text=supported%20but%20must%20use%20the,writing%20%E2%80%93%20check%20Salesforce%20External
https://devcenter.heroku.com/articles/runtime-principles#:~:text=On%20Heroku%2C%20apps%20are%20completely,environment%20variable
https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138#:~:text=You%20can%27t%20deploy%20%60ts,p%20.%60%20on%20publish
https://stackoverflow.com/questions/34224150/heroku-deploy-using-ts-node/45742138
https://devcenter.heroku.com/articles/config-vars#:~:text=%24%20heroku%20config%3Aset%20GITHUB_USERNAME%3Djoesmith%20Adding,variables%20using%20the%20ENV
https://devcenter.heroku.com/articles/heroku-inference-working-with-mcp#:~:text=You%20can%20test%20deployed%20MCP,servers%20with%20MCP%20Inspector
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

About Cirra AI

Cirra AI is a specialist software company dedicated to reinventing Salesforce administration and delivery through

autonomous, domain-specific AI agents. From its headquarters in the heart of Silicon Valley, the team has built the

Cirra Change Agent platform—an intelligent copilot that plans, executes, and documents multi-step Salesforce

configuration tasks from a single plain-language prompt. The product combines a large-language-model

reasoning core with deep Salesforce-metadata intelligence, giving revenue-operations and consulting teams the

ability to implement high-impact changes in minutes instead of days while maintaining full governance and audit

trails.

Cirra AIʼs mission is to “let humans focus on design and strategy while software handles the clicks.” To

achieve that, the company develops a family of agentic services that slot into every phase of the change-

management lifecycle:

Requirements capture & solution design – a conversational assistant that translates business

requirements into technically valid design blueprints.

Automated configuration & deployment – the Change Agent executes the blueprint across sandboxes

and production, generating test data and rollback plans along the way.

Continuous compliance & optimisation – built-in scanners surface unused fields, mis-configured sharing

models, and technical-debt hot-spots, with one-click remediation suggestions.

Partner enablement programme – a lightweight SDK and revenue-share model that lets Salesforce SIs

embed Cirra agents inside their own delivery toolchains.

This agent-driven approach addresses three chronic pain points in the Salesforce ecosystem: (1) the high cost of

manual administration, (2) the backlog created by scarce expert capacity, and (3) the operational risk of

unscripted, undocumented changes. Early adopter studies show time-on-task reductions of 70-90 percent for

routine configuration work and a measurable drop in post-deployment defects.

Leadership

Cirra AI was co-founded in 2024 by Jelle van Geuns, a Dutch-born engineer, serial entrepreneur, and 10-year

Salesforce-ecosystem veteran. Before Cirra, Jelle bootstrapped Decisions on Demand, an AppExchange ISV

whose rules-based lead-routing engine is used by multiple Fortune 500 companies. Under his stewardship the

firm reached seven-figure ARR without external funding, demonstrating a knack for pairing deep technical

innovation with pragmatic go-to-market execution.

Jelle began his career at ILOG (later IBM), where he managed global solution-delivery teams and honed his

expertise in enterprise optimisation and AI-driven decisioning. He holds an M.Sc. in Computer Science from Delft

University of Technology and has lectured widely on low-code automation, AI safety, and DevOps for SaaS

platforms. A frequent podcast guest and conference speaker, he is recognised for advocating “human-in-the-loop

autonomy”—the principle that AI should accelerate experts, not replace them.

Why Cirra AI matters

Deep vertical focus – Unlike horizontal GPT plug-ins, Cirraʼs models are fine-tuned on billions of

anonymised metadata relationships and declarative patterns unique to Salesforce. The result is context-

Building and Deploying a TypeScript MCP Server on Heroku

Page 13 of 14

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

aware guidance that respects org-specific constraints, naming conventions, and compliance rules out-of-

the-box.

Enterprise-grade architecture – The platform is built on a zero-trust design, with isolated execution

sandboxes, encrypted transient memory, and SOC 2-compliant audit logging—a critical requirement for

regulated industries adopting generative AI.

Partner-centric ecosystem – Consulting firms leverage Cirra to scale senior architect expertise across

junior delivery teams, unlocking new fixed-fee service lines without increasing headcount.

Road-map acceleration – By eliminating up to 80 percent of clickwork, customers can redirect scarce

admin capacity toward strategic initiatives such as Revenue Cloud migrations, CPQ refactors, or data-model

rationalisation.

Future outlook

Cirra AI continues to expand its agent portfolio with domain packs for Industries Cloud, Flow Orchestration, and

MuleSoft automation, while an open API (beta) will let ISVs invoke the same reasoning engine inside custom UX

extensions. Strategic partnerships with leading SIs, tooling vendors, and academic AI-safety labs position the

company to become the de-facto orchestration layer for safe, large-scale change management across the

Salesforce universe. By combining rigorous engineering, relentlessly customer-centric design, and a clear ethical

stance on AI governance, Cirra AI is charting a pragmatic path toward an autonomous yet accountable future for

enterprise SaaS operations.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. Cirra shall not be liable

for any damages arising from the use of this document. This content may include material generated with assistance from

artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical information independently.

All product names, trademarks, and registered trademarks mentioned are property of their respective owners and are used

for identification purposes only. Use of these names does not imply endorsement. This document does not constitute

professional or legal advice. For specific guidance related to your needs, please consult qualified professionals.

Building and Deploying a TypeScript MCP Server on Heroku

Page 14 of 14

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku

