
Generative AI Integration for Dynamic LWC Form
Building
Published August 7, 2025 35 min read

Building a Generative AI-Driven Form Builder for
Lightning Web Components
Generative AI is revolutionizing software development by enabling natural-language prompts to produce

working code and user interfaces. In the Salesforce ecosystem, this means we can create Lightning

Web Components (LWC) forms on the fly using instructions like “Create a phone number and email

input for contacts”. In this in-depth article, we demonstrate how to integrate a Large Language Model

(LLM) into a custom LWC form builder that takes such natural-language field definitions and outputs fully

wired form components with validation rules. Weʼll explore the architecture, implementation steps, and

best practices – all while echoing the simplicity ethos exemplified by Bob Buzzardʼs formula tester page

(a minimal, user-friendly interface for testing Salesforce formulas) (Source: buzzard37.rssing.com).

Generative AI Integration for Dynamic LWC Form Building

Page 1 of 23

https://cirra.ai/articles/ai-dynamic-formulas-apex-salesforce
https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=The%20Sample
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Generative AI in Salesforce Development

Salesforce has been rapidly embracing generative AI to assist developers. In 2025, 86% of IT leaders

expected generative AI to play a significant role in enterprise operations (Source: getgenerative.ai).

Salesforceʼs own tools like Agentforce for Developers illustrate this trend: Agentforce (a VS Code and

Code Builder extension) can turn natural-language prompts into ready-to-deploy Apex and LWC code

(Source: getgenerative.ai). For example, a prompt like “create a trigger for Opportunity stage changes”

can yield a complete Apex trigger, or an LWC prompt can generate component boilerplate. Salesforce is

even piloting Generative Lightning Canvas, which uses LLMs to dynamically generate entire user

interfaces (dashboards, pages, layouts) based on user prompts and context (Source: salesforce.com)

(Source: salesforce.com). This means AI can not only generate content and code, but also assemble

UI/UX elements on the fly, grounded in trusted data and components (Source: salesforce.com).

Why does this matter for form building? Traditionally, creating a form in LWC meant writing HTML

template code for each field, wiring JavaScript for interactions, and deploying changes for every form

update. Itʼs time-consuming and rigid (Source: up-crm.com). Generative AI offers a way to speed up and

simplify this process: you describe the form you need in plain language, and the AI produces the LWC

code or configuration for you. In other words, we can build a “form builder” powered by an LLM to rapidly

prototype or even deploy forms.

Lightning Web Components Form Basics

Before diving into AI integration, letʼs clarify how forms are typically built in LWC and what “fully wired

components with validation” entails:

Lightning Input vs. Lightning Record Forms: LWC provides base components like <lightning-

input> for individual fields and higher-level components like <lightning-record-edit-form>

(with <lightning-input-field> children) for forms bound to Salesforce sObjects. Using

<lightning-record-edit-form> automatically handles record save logic and respects field

metadata (like data types and requiredness) out-of-the-box (Source: salesforcediaries.com). For

instance, a <lightning-input-field field-name="Email"> within a record-edit-form will enforce

that the input is a valid email format and apply field-level security and required rules as defined on

the Contact object.

Field Metadata and Validation: Each Salesforce field (e.g., Contact Email or Phone) carries

metadata: data type, length, required/not, help text, etc. The base component <lightning-input-

field> taps into this, ensuring, for example, that an “Email” field only accepts text in email format

and a “Phone” field uses phone-specific input patterns (Source: salesforcediaries.com)(Source:

Generative AI Integration for Dynamic LWC Form Building

Page 2 of 23

https://www.getgenerative.ai/top-ai-tools-every-salesforce-developer-should-know/#:~:text=In%202025%2C%2086,surface%20deep%20insights%20across%20applications
https://cirra.ai/articles/salesforce-agentforce-ai-agents
https://www.getgenerative.ai/top-ai-tools-every-salesforce-developer-should-know/#:~:text=Agentforce%20for%20Developers%20is%20a,LWC
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Introducing%20the%20new%20Salesforce%20Generative,trends%2C%20and%20other%20Lightning%20components
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=AI%20is%20transforming%20how%20we,they%20can%20be%20to%20use
https://cirra.ai/articles/generative-ai-trailhead-module-creation
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Rather%20than%20generating%20UI%20from,configured%20in%20your%20Salesforce%20instance
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=,Forms
https://cirra.ai/articles/natural-language-interface-salesforce-cli
https://cirra.ai/articles/natural-language-interface-salesforce-cli
https://salesforcediaries.com/2022/09/10/reusable-dynamic-lightning-input-with-field-level-security/#:~:text=A%C2%A0%60lightning,We%20are%20going%20to%20add
https://salesforcediaries.com/2022/09/10/reusable-dynamic-lightning-input-with-field-level-security/#:~:text=A%C2%A0%60lightning,We%20are%20going%20to%20add
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

salesforcediaries.com). If using raw <lightning-input> elements, developers must manually

configure attributes (like type="email" or pattern regex) and perform validation checks in

JavaScript for things like proper formatting or non-empty values. “Fully wired” in this context means

all the necessary event handlers, data binding, and validation logic are included – the form isnʼt

just static inputs; itʼs connected to data and will provide error feedback if rules are violated.

Data Wiring (Binding): In LWC, binding a form to data can be done via the Lightning Data Service or

Apex. A common pattern for custom forms is to use an <lightning-record-edit-form> with a

specific record-id (for editing an existing record) or omit it for a new record. The form can then be

submitted via a button that triggers standard LDS save behavior. Alternatively, one can capture input

values and call an Apex method to create/update a record. In both cases, “wiring” refers to

connecting the form to Salesforce – either through LDS (no Apex required) or through an Apex

@AuraEnabled method using @wire adapters or imperative calls.

Custom Validation Rules: Besides UI validations, Salesforce admins often configure Validation

Rules on objects (server-side rules that reject saves if conditions arenʼt met). Our LLM-driven form

builder could potentially incorporate awareness of these – for example, if a prompt indicates a

certain constraint (“phone number must be 10 digits”), the generated component might include a

client-side check or a hint that a server rule exists. However, in this article, weʼll focus on client-side

validation for format and required fields, to give immediate feedback to users. Weʼll ensure our

generated form includes attributes like required={true} for mandatory fields and uses appropriate

type or pattern for format validation (e.g., type="email" for emails, which inherently checks for an

“@” pattern).

The Metadata-Driven Approach to Dynamic Forms

Even before generative AI, advanced Salesforce developers have advocated dynamic, metadata-driven

forms to avoid hardcoding each field in LWC. The idea is to define form structure in a data format

(e.g., JSON) and have a generic LWC render it. This approach decouples the form definition from code,

making it easy to add or remove fields without redeployment (Source: up-crm.com)(Source: up-

crm.com). For example, a JSON schema for a contact form might list fields like this (in pseudo-JSON):

Generative AI Integration for Dynamic LWC Form Building

Page 3 of 23

https://salesforcediaries.com/2022/09/10/reusable-dynamic-lightning-input-with-field-level-security/#:~:text=1.%20lightning,the%20component%20in%20record%20context
https://cirra.ai/articles/ai-apex-test-data-generation
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Instead%20of%20hardcoding%20form%20structure%2C,Here%E2%80%99s%20how%20it%20works
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Below%20is%20a%20sample%20configuration,contact%20form%20defined%20in%20JSON
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Below%20is%20a%20sample%20configuration,contact%20form%20defined%20in%20JSON
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

{

 "object": "Contact",

 "fields": [

 {

 "apiName": "Phone",

 "label": "Phone Number",

 "type": "Phone",

 "required": true

 },

 {

 "apiName": "Email",

 "label": "Email Address",

 "type": "Email",

 "required": true

 }

]

}

A generic form engine can read this and construct the form at runtime – essentially what Dynamic Forms

(the Salesforce admin feature) does declaratively, or what a custom LWC can do by parsing JSON.

UpCRM describes this technique: store the JSON as a Static Resource or Custom Metadata, fetch it in

Apex/LWC, then use JavaScriptʼs JSON.parse() to iterate and create inputs like <lightning-input> or

<lightning-combobox> dynamically (Source: up-crm.com). This yields tremendous flexibility: one

engine can serve multiple forms, and minor changes (like adding a field) are just JSON edits, not code

changes (Source: up-crm.com).

Why mention this? Because our LLM-driven form builder will leverage a similar concept – except the

JSON (or code) is generated on the fly by an AI instead of pre-written by a developer. The LLM

essentially becomes a smart “form metadata author”. By combining the metadata-driven approach with

AI, we get the best of both worlds: the flexibility of dynamic forms and the productivity of natural

language specifications.

Architectural Overview: Integrating an LLM with LWC

Now, letʼs outline the architecture for our Generative AI Form Builder:

Generative AI Integration for Dynamic LWC Form Building

Page 4 of 23

https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=,Apex%20and%20LWC
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=or%20removing%20a%20field%3F%20Just,%E2%80%94%20no%20code%20change%20required
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

User Interface (LWC): A Lightning Web Component provides a simple UI to the end-user (likely a

developer or admin user in this case) where they can input a prompt describing the form. This could

be a single-line text input or a textarea for more complex instructions. Following the simplicity ethos

of Bob Buzzardʼs formula tester, our interface will be minimalistic – essentially just a text box and a

“Generate Form” button, plus an area where the resulting form appears or code is displayed. Bobʼs

formula tester page, for instance, had just a text area for the formula and a checkbox to toggle

template mode (Source: buzzard37.rssing.com) – keeping controls sparse to reduce friction. We aim

for a similarly streamlined experience: one prompt field and perhaps a couple of optional settings

(like target object, etc.).

Lightning Web Component (Controller): When the user clicks "Generate", the LWCʼs JavaScript

will need to call an LLM service. Lightning Web Components cannot directly call external APIs on

the client side without some considerations (CSP and Salesforce security policies apply). We have

a few options here:

1. Apex Callout: Implement an Apex @AuraEnabled method that calls the LLMʼs API (such as

OpenAIʼs GPT endpoint or an Einstein AI endpoint). The LWC invokes this method (via

LightningElement.callApex or using wire/imperaive call), passing the prompt, and receives

the LLMʼs response. This is a common and secure pattern since Apex can use Named

Credentials for authentication and respects Salesforceʼs callout rules.

2. Direct JS Call (Fetch): Use the fetch() API in the LWCʼs JavaScript to call the LLM REST

endpoint directly. This approach was demonstrated, for example, by Salesforce Diaries in

integrating Googleʼs Gemini LLM via fetch in LWC (Source: salesforcediaries.com)(Source:

salesforcediaries.com). However, direct calls from LWC JavaScript require the remote site to

allow cross-origin requests and expose API keys, which is not ideal for production (the Diaries

tutorial explicitly cautions to route such calls through a proxy or Apex for security (Source:

salesforcediaries.com)). For our design, weʼll prefer the Apex-mediated approach for security

and simplicity.

3. Einstein GPT (Agentforce Models API): If you have Salesforceʼs native generative AI

capabilities enabled (Pilot/Beta as of 2024-2025), you could call an LLM via the Einstein Trust

Layer using the Agentforce Models API in Apex. For instance, Salesforce provides Apex classes

to call a model like sfdc_ai__DefaultVertexAIGemini25Flash001 (Gemini 2.5 model) and get

a response (Source: salesforcediaries.com)(Source: salesforcediaries.com). The advantage is

that Salesforce manages the LLM and security; the downside is you must use the models

available (which might not be specifically trained on Salesforce coding patterns). For our

scenario – generating LWC form code – a general model like GPT-4 likely has more knowledge of

Lightning components, so using an external service may yield better results.

Generative AI Integration for Dynamic LWC Form Building

Page 5 of 23

https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=The%20Sample
https://salesforcediaries.com/2025/07/13/gemini-ai-api-with-lwc-file-analysis/#:~:text=async%20callGeminiAPI%28%29%20,isLoading%20%3D%20true
https://salesforcediaries.com/2025/07/13/gemini-ai-api-with-lwc-file-analysis/#:~:text=try%20,body%3A%20JSON.stringify%28requestBody%29
https://salesforcediaries.com/2025/07/13/gemini-ai-api-with-lwc-file-analysis/#:~:text=,validation%2C%20and%20data%20protection%20measures
https://salesforcediaries.com/2025/07/11/agentforce-models-api-lwc-file-analysis/#:~:text=request
https://salesforcediaries.com/2025/07/11/agentforce-models-api-lwc-file-analysis/#:~:text=aiplatform,createGenerations%28request
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

LLM Service: This could be OpenAIʼs GPT-4/GPT-3.5, Azure OpenAI, Anthropic Claude, Google

PaLM (Gemini) or any LLM of your choice. The Salesforce LLM Open Connector introduced in 2024

aims to let customers plug in any LLM into the Salesforce ecosystem (Source:

developer.salesforce.com)(Source: developer.salesforce.com). For simplicity, we can imagine using

OpenAIʼs API (since itʼs well-documented and known to produce code). Weʼd send a prompt

describing the desired form and receive back either:

LWC Code: e.g., the <template> and JavaScript code for a new component that implements

the form.

Structured Data (JSON): a representation of the form fields that our LWC can interpret to

render the form.

Each approach has merits. Having the LLM output raw code means it could include nuanced logic

(like event handlers for validation) in one go, but it might also hallucinate or use outdated syntax –

requiring the developer to verify and possibly tweak the output. On the other hand, asking the LLM to

output a JSON schema of fields is safer to parse and use dynamically, but then our LWC must have a

generic form renderer (which we can build using the metadata-driven approach mentioned earlier).

Dynamic Form Renderer: After getting the LLM response, the LWC needs to display the generated

form. If the response was LWC code, we might simply show it to the user in a text box or a syntax-

highlighted block for copy-paste (since actually executing new code in the browser on the fly is not

trivial in Salesforce). However, a more compelling experience (and closer to “what you prompt is

what you get”) is to render the form live. We achieve that by using a generic form component. For

example, our main LWC (call it FormBuilder) can include in its template a placeholder like <div

lwc:dom="manual" id="formContainer"></div> or better, use a child component that iterates over

a list of field configs.

A straightforward method is to have FormBuilder hold an array of field definitions (initially empty).

When the LLM returns JSON, we do this.fields = JSON.parse(response) in the JS. The

template could have:

html

Copy

<template if:true={fields}> <lightning-record-edit-form object-api-name=

{objectApiName} onsuccess={handleSuccess}> <template for:each={fields} for:item="f">

<lightning-input key={f.apiName} label={f.label} type={f.htmlType} name={f.apiName}

Generative AI Integration for Dynamic LWC Form Building

Page 6 of 23

https://developer.salesforce.com/blogs/2024/10/build-generative-ai-solutions-with-llm-open-connector#:~:text=Builder
https://developer.salesforce.com/blogs/2024/10/build-generative-ai-solutions-with-llm-open-connector#:~:text=Since%20July%202024%2C%20BYO%20LLM,of%20generative%20AI%20within%20Salesforce
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

required={f.required} onchange={handleChange}> </lightning-input> </template>

<lightning-button type="submit" label="Save"></lightning-button> </lightning-record-

edit-form> </template>

This snippet (conceptual) would create a record edit form for the specified object and dynamically

insert <lightning-input> for each field. We use <lightning-input> here to control validation

messaging manually; alternatively, for true metadata-driven rendering, one might use <lightning-

input-field field-name={f.apiName}> inside the record-edit-form, which auto-hooks to the

record data. However, mixing dynamic iteration with lightning-input-field can be tricky because

those need to be direct children of the form and bound to a record. A workaround is to use a static

lightning-record-edit-form with an aura:Id and programmatically create fields – which gets complex.

For clarity, weʼll assume using lightning-input and doing our own validation and save via Apex.

The validation rules can be implemented by:

Checking each fieldʼs validity on blur or form submit. LWCʼs LightningElement provides

this.template.querySelectorAll('lightning-input') to grab all inputs; each has a

checkValidity() and reportValidity() method. We can loop through inputs to ensure all

are valid before allowing submission.

Using patterns or types: We set type="email" which automatically ensures an email format,

and type="tel" (or type="text" with pattern for phone) to enforce digits. For example, we

might instruct the LLM to include a regex pattern for phone like [0-9]{10} for a 10-digit phone

number. If the LLM doesnʼt do it, a developer can add it after or we could have a post-processing

step (like if field label contains "phone", inject a pattern).

The output of the LLM might also include helpful text (help text for fields, or error messages). For

instance, it could say “phone should be 10 digits” which we could surface as patternMismatch

message in the lightning-inputʼs attributes (Lightning Input doesnʼt allow custom message easily, but

one can show a <div if:error> etc. – out of scope for now).

Submit/Saving Data: A form isnʼt very useful if it canʼt save data. With a dynamic form, we have two

paths:

1. If using <lightning-record-edit-form> , we get a no-code save – the Lightning Data Service

will handle it when we call form.submit() or use a submit button (as in the snippet above). We

just need to handle the onsuccess event to perhaps show a success message.

2. If using a custom form (with lightning-input and a custom button), we gather the values (from

event.target.value in each onchange , or via querySelectorAll) and call an Apex method to

insert a new Contact (or update, if recordId provided). The Apex would be a simple method that

Generative AI Integration for Dynamic LWC Form Building

Page 7 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

takes a Contact fields JSON or separate parameters and does insert new Contact(...); .

This approach is more verbose but allows control (we could even use the LLM to generate that

Apex code, but thatʼs overkill here).

For demonstration, path #1 is elegant – using the standard record form means we donʼt need additional

Apex to save, and it will also respect server-side validation rules automatically on save (the platform will

error if a Validation Rule fails, and we can catch that in onerror event of the form).

Step-by-Step Implementation Guide

Letʼs walk through a concrete implementation of the Generative AI-driven form builder:

1. LWC UI – Capturing the Prompt

We create an LWC (say genFormBuilder) with a simple template:

html

Copy

<template> <lightning-card title="Generative Form Builder" icon-name="utility:magic">

<div class="slds-p-around_medium"> <lightning-textarea name="prompt" label="Describe the

Form" placeholder="E.g. 'Create a phone number and email input for contacts'" value=

{promptText} onchange={handlePromptChange}> </lightning-textarea> <lightning-button

label="Generate Form" variant="brand" class="slds-m-top_small" onclick={handleGenerate}

disabled={isGenerating}> </lightning-button> <template if:true={isGenerating}>

<lightning-spinner alternative-text="Generating form..." class="slds-m-top_small">

</lightning-spinner> </template> <template if:true={errorMessage}> <div class="slds-text-

color_error slds-m-top_small">{errorMessage}</div> </template> <!-- Render generated form

(if available) --> <template if:true={fieldConfigs}> <div class="slds-m-top_medium slds-

box slds-theme_default"> <!-- Dynamic form fields --> <lightning-record-edit-form object-

api-name={objectApiName} onsuccess={handleSuccess} onerror={handleError}> <template

for:each={fieldConfigs} for:item="field"> <lightning-input-field key={field.apiName}

field-name={field.apiName} required={field.required}></lightning-input-field> </template>

<lightning-button type="submit" label="Save {objectApiName}" class="slds-m-top_small">

</lightning-button> </lightning-record-edit-form> </div> </template> </div> </lightning-

card> </template>

In this template, we have:

Generative AI Integration for Dynamic LWC Form Building

Page 8 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

A textarea for the prompt (with an example placeholder to guide the user).

A Generate Form button that triggers the LLM call.

A spinner and error message region for user feedback during generation.

A container for the rendered form: we decided to use lightning-record-edit-form with dynamic

<lightning-input-field> elements for each field returned. We also include a submit button to

save the record (the label dynamically shows the object, e.g., “Save Contact”).

This design leans on standard Base Components to reduce custom code. Note that using <lightning-

input-field> in a dynamic loop is somewhat experimental – as of this writing, it works if the

fieldConfigs array is set properly, but if any issues arise (like fields not rendering due to LDS quirks),

an alternative is to use <lightning-input> and manage the form submission manually via Apex. For the

sake of illustration, we proceed with lightning-record-edit-form as it automatically handles

validation and save.

The simplicity here is that the user just types what they want and clicks a button. No need to drag-and-

drop fields or navigate multiple menus. This mirrors the one-step simplicity of the formula tester page

– just input text and get results, possibly with a minor toggle or two (in our case we might have an

optional object name field; but we could also parse the object from prompt text if mentioned, e.g., “for

contacts” implies object=Contact).

2. Apex Controller – Calling the LLM

We create an Apex class FormGeneratorController with a static method to handle the LLM API call.

Using Apex provides security and avoids exposing our API key on the client. We leverage Named

Credentials for the external API, as this is the modern Salesforce best practice for callouts (introduced

Summer ʼ23)iandrosov.github.ioiandrosov.github.io. By setting up a Named Credential for OpenAI (or

whichever LLM), we store the API key securely in an External Credential and configure the Named

Credential to inject the Authorization: Bearer <key> header automaticallyiandrosov.github.io. Igor

Androsovʼs guide on using Named Credentials for ChatGPT API shows how to do this step by

stepiandrosov.github.ioiandrosov.github.io.

Hereʼs a simplified Apex method:

Generative AI Integration for Dynamic LWC Form Building

Page 9 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

public with sharing class FormGeneratorController { // Named Credential "OpenAI_API" is

private static final String COMPLETIONS_PATH = '/v1/chat/completions';

// for ChatGPT @AuraEnabled(cacheable=false) public static String generateFormSchema(Str

req.setEndpoint(OPENAI_NAMED_CRED + COMPLETIONS_PATH);

req.setMethod('POST');

req.setHeader('Content-Type', 'application/json');

// Construct the chat prompt to ask for LWC form JSON String systemInstruction = 'You ar

String userMessage = 'Design a form for: ' + prompt + '. Return a JSON array of fields w

Map<String, Object> requestBody = new Map<String, Object>{ 'model' => 'gpt-4-0613', // s

 'content' => systemInstruction }, new Map<String,Object>{ 'role' => 'user', 'content

req.setBody(JSON.serialize(requestBody));

Http http = new Http();

try { HttpResponse res = http.send(req);

if(res.getStatusCode() == 200) { // Parse the JSON response to extract the assistant's m

List<Object> choices = (List<Object>)result.get('choices');

if (!choices.isEmpty()) { Map<String,Object> firstChoice = (Map<String,Object>)choices.g

Map<String,Object> message = (Map<String,

 Object>)firstChoice.get('message');

String content = (String) message.get('content');

return content;

} } else { System.debug('OpenAI API call failed: '+res.getStatusCode()+' - '+res.getBody

throw new CalloutException('LLM API error: '+res.getStatusCode());

} } catch(Exception e) { System.debug('Callout exception: '+e);

throw new CalloutException('Failed to call LLM: '+e.getMessage());

} return null;

} }

Letʼs break down what this does (similar to the approach by DreamInForce blog for ChatGPT integration

(Source: dreaminforce.com)(Source: dreaminforce.com), but adapted to our use-case):

We use the Chat Completions API (/v1/chat/completions) with a system and user message. The

system prompt instructs the LLM to act as an expert in LWC and to output only JSON with no extra

text. This is important to get a clean, machine-readable response (no hallucinatory prose). The user

prompt includes the natural language request for the form, and explicitly asks for “a JSON array of

fields with label, apiName, type, required”. We also hint that it should infer standard field API names

(so if user says "email input", the LLM ideally returns apiName: "Email" which is the actual Contact

field API name for email, likewise Phone).

Generative AI Integration for Dynamic LWC Form Building

Page 10 of 23

https://www.dreaminforce.com/salesforce-chatgpt-integration-using-apex/#:~:text=Salesforce%20ChatGPT%20Integration%20Apex%20Code
https://www.dreaminforce.com/salesforce-chatgpt-integration-using-apex/#:~:text=request.setEndpoint%28ENDPOINT_URL%29%3B%20request.setMethod%28%27POST%27%29%3B%20request.setHeader%28%27Content,setTimeout%28120000
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

We specify the model (GPT-4 in this example, which tends to produce better structured output and

understands instructions well). If using GPT-3.5, results may vary; one could also use function calling

feature of OpenAI (if available) to directly get JSON without parsing, but our example sticks to basic

usage.

The Apex method sends the HTTP request and then deserializes the JSON response. According to

OpenAIʼs response format, we dig into choices[0].message.content to get the assistantʼs answer

(the JSON string we want). We return that string back to the LWC.

Security-wise, because we used a Named Credential (callout:OpenAI_API), the API key is handled in

the platform. If not using Named Credentials, one would have to store the key in a Custom Setting or

paste it in code (not recommended) and add the OpenAI domain to Remote Site Settings (Source:

dreaminforce.com). Named Credentials are the preferred approach as they keep the key secret and allow

easy rotation and environment managementiandrosov.github.ioiandrosov.github.io.

3. Processing the LLM Response in LWC

Back in our LWC JavaScript (genFormBuilder.js), the handleGenerate() function will:

Set this.isGenerating = true (to show the spinner and disable the button).

Call the Apex generateFormSchema(prompt) method (likely via import generateFormSchema from

'@salesforce/apex/FormGeneratorController.generateFormSchema'; and then using

generateFormSchema({ prompt: this.promptText }) as a promise).

Await the result (or use .then() promise chaining).

When the promise resolves, we expect a JSON string content. We then do:

js

Copy

handleGenerate() { this.errorMessage = ''; this.isGenerating = true;

generateFormSchema({ prompt: this.promptText }) .then(resultString => { this.isGenerating

= false; if(resultString) { try { let fields = JSON.parse(resultString.trim()); // Basic

validation: ensure it's an array if(Array.isArray(fields)) { this.fieldConfigs = fields;

// Infer object API name from prompt or let user specify this.objectApiName =

this.inferObjectFromPrompt(this.promptText) || 'Contact'; } else { throw new Error('LLM

response is not an array of fields'); } } catch(e) { console.error('Error parsing LLM

response JSON', e); this.errorMessage = 'Failed to parse form definition from AI. Please

refine your prompt.'; this.fieldConfigs = null; } } else { this.errorMessage = 'No form

Generative AI Integration for Dynamic LWC Form Building

Page 11 of 23

https://www.dreaminforce.com/salesforce-chatgpt-integration-using-apex/#:~:text=This%20example%20shows%20how%20to,site%20in%20remote%20site%20settings
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

definition received. Try rephrasing the prompt.'; } }) .catch(error => {

this.isGenerating = false; console.error('Error from Apex/LLM call', error);

this.errorMessage = 'Error generating form: ' + (error.body ? error.body.message :

error.message); }); }

Key points:

We JSON.parse the returned string. If OpenAI returned something like:

[

 {

 "label": "Phone Number",

 "apiName": "Phone",

 "type": "Phone",

 "required": true

 },

 {

 "label": "Email Address",

 "apiName": "Email",

 "type": "Email",

 "required": true

 }

]

then fields becomes a JavaScript array of objects. We then set this.fieldConfigs = fields ,

which triggers the LWC re-render to display the form (because fieldConfigs is used in the

templateʼs if:true and loop).

We determine the objectApiName for the lightning-record-edit-form . In this example, since the

user said “for contacts”, ideally the LLM might not explicitly return the object. We can either:

Include the object in the returned data (we didnʼt ask for it, but we could ask the LLM to output

an object name too).

Infer from prompt: a simple helper inferObjectFromPrompt(promptText) could check for

keywords like “contact” or “account” in the prompt. In our case, we find “contacts” -> map to

Contact. This is a heuristic; a more robust approach might parse the prompt with another LLM

call or a list of Salesforce objects.

Generative AI Integration for Dynamic LWC Form Building

Page 12 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Default to a common object (Contact) if unsure.

Error handling: If parsing fails or the response is empty, we show an error message. LLMs might

occasionally return something not JSON (especially if prompt wasnʼt constrained well). Our system

prompt “Output only JSON” helps, but we add guardrails. If the userʼs description is unclear, the LLM

might return an empty or very minimal structure; we handle that by prompting the user to refine

input.

4. Dynamic Rendering of the Form

Once fieldConfigs is set to the array from AI, the LWC template we defined will render the form. Each

lightning-input-field in the loop will display the fieldʼs label and handle input according to type:

For "type": "Phone" , how does lightning-input-field behave? It will likely render a phone

input (possibly similar to text but could enforce some validation – Salesforce phone fields accept

various formats, but the component may not strictly validate length).

For "type": "Email" , <lightning-input-field> will ensure the input is a valid email address

format (it will show an error if not, on blur).

We marked both as required: true , so each field will have a red asterisk and, if left blank on

submit, Salesforce will throw a required field missing error on save (or the component might catch it

client-side – not entirely certain if lightning-input-field does client check for required before submit

or relies on server, but either way, the user will not be able to save empty required fields).

The lightning-record-edit-form automatically ties into the Contact object (via object-api-name=

{objectApiName}). Without a record-id , it operates in create mode. When the user fills the fields and

clicks "Save Contact", the form will perform a DML to create a new Contact record. On success, the

onsuccess event fires, which we handle with handleSuccess(event) – where we can show a success

toast or message. On error (like a validation rule preventing save, or required field missing),

handleError(event) can be used to display the error. We might simply console.log or show

event.detail.message in an alert for this prototype.

This dynamic rendering approach showcases the power of metadata-driven UI: one generic component

is serving any form the LLM defines. As Salesforce developer Nataliia Veretenina writes, “one engine can

serve multiple forms across your app”, bringing flexibility and faster time-to-market (Source: up-

crm.com). By offloading the form specification to data (and now, to AI), we avoid writing new code for

every new form requirement.

Generative AI Integration for Dynamic LWC Form Building

Page 13 of 23

https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

5. Example Walk-through

Letʼs walk through the initial example: The user enters the prompt:

“Create a phone number and email input for contacts.”

Step 1: User hits Generate Form. The LWC calls Apex generateFormSchema(prompt="Create a phone

number and email input for contacts") .

Step 2: Apex constructs the chat request. The user message to the LLM is essentially asking: “Design a

form for: Create a phone number and email input for contacts.” The LLM (say GPT-4) sees we want a

form, presumably for the Contact object, with phone and email. Thanks to our prompt instructions, the

LLM might return something like:

[

 {

 "label": "Phone Number",

 "apiName": "Phone",

 "type": "Phone",

 "required": false

 },

 { "label": "Email", "apiName": "Email", "type": "Email", "required": false }

]

(Note: It might not mark them required unless we indicated they should be; the natural language didnʼt

say “required”, just said “create an input”. We could adjust the prompt to default to required = true, or the

user can say “required phone and email inputs”. For illustration, we keep them not required and discuss

validation shortly.)

The Apex callout receives this JSON in the response content and returns it to LWC.

Step 3: LWC parses the JSON into this.fieldConfigs . We infer object “Contact” from the word

“contacts” in the prompt.

Step 4: The form renders. The card now shows two fields: Phone Number and Email, both as lightning

input fields. The user can interact with them immediately. Suppose the user tries to save without filling

one or both:

Generative AI Integration for Dynamic LWC Form Building

Page 14 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Since we did not set required:true in this JSON, the component might allow blank (and Salesforce

Contact doesnʼt require Phone or Email by default at the database level, unless validation rules exist).

In a real scenario, we might want them required. Letʼs assume we want them required – the user

could prompt that or we can decide any field mentioned is likely required. We can refine our AI

prompt or post-process to set required=true for all fields unless specified otherwise. This is a design

decision.

If the user enters an invalid email (like “john.doe” without “@”), the lightning-input-field will

flag it as invalid on blur – the field border turns red and an error message appears (the standard

"Complete this field" or "Enter a valid email address" error).

If everything looks good, user clicks Save Contact. The lightning-record-edit-form will call

Salesforce to insert a Contact with the provided values for Phone and Email. If successful, the

onsuccess event provides the new record Id. We could then show a message, and maybe even

allow the user to generate another form or clear the form.

Validation & Wiring Discussion: In this flow, we relied on native components for validation. If we had

used pure <lightning-input> instead, we would manually do:

js

Copy

handleSubmit() { // not using record-edit-form's own submit const allInputs =

this.template.querySelectorAll('lightning-input'); let allValid = true;

allInputs.forEach(input => { if(!input.checkValidity()) { allValid = false;

input.reportValidity(); } }); if(!allValid) { return; } // gather values and call Apex to

save let fields = {}; allInputs.forEach(input => { fields[input.name] = input.value });

createContact({ fieldValues: fields }) .then(() => { ... }); }

This illustrates how weʼd wire up the data if not using record-edit-form. But since we did use it, we got

wiring for free. The “fully wired” part of our LLMʼs output primarily concerned the component code itself

– had we asked the LLM for LWC code, weʼd expect it to include the needed <lightning-record-edit-

form> markup or an imperative save. In our design, we moved wiring concerns into our generic container

and Apex, keeping the LLMʼs job simpler (just field specs).

Generative AI Integration for Dynamic LWC Form Building

Page 15 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Ensuring Simplicity and a Great UX (Lessons from the Formula

Tester)

Itʼs worth noting how we kept the user experience straightforward:

Minimal Input, Clear Output: The user provides one prompt. There arenʼt multiple forms to fill or a

complicated UI. This draws on the formula testerʼs approach – Bob Buzzardʼs tool let admins type a

formula and immediately see the evaluated result, with just one optional checkbox for template mode

(Source: buzzard37.rssing.com). We similarly allow one input and then show the final product (the

form) right away, focusing the userʼs attention on the result rather than the process.

Helpful Defaults and Automation: In Bobʼs formula page, when a user typed a formula containing

{! ... } , the page automatically ticked the “Formula is template” checkbox (with a gentle 1-

second debounce) (Source: buzzard37.rssing.com). This kind of assistive behavior reduces user

effort. In our case, we attempt to infer the object from their prompt to save them an extra step (e.g.,

auto-setting object to Contact because they mentioned “contacts”). We could also automatically

mark fields as required if the prompt says “create a form for X” under the assumption that key fields

should be required. These little conveniences echo the ethos of making the tool smart enough to

simplify the userʼs job.

Transparency and Editing: After generation, the user can see exactly what fields were produced

and can test the form immediately. If something isnʼt right (maybe the AI misinterpreted a field name

or omitted a field), the user can adjust the prompt and regenerate. This tight feedback loop is crucial

when working with AI-generated outputs, as LLMs can sometimes misunderstand instructions. By

instantly visualizing the form, the user quickly validates whether the AI “got it right.”

Additionally, to make this solution professional-grade, consider implementing:

Prompt Templates & Few-Shot Examples: LLMs respond better when given clear patterns. We

used a system message to constrain output. We could further give an example, e.g., “If user says a

form with First Name (required text) and Age (number) respond with [{"label":"First

Name","apiName":"FirstName","type":"Text","required": true},

{"label":"Age","apiName":"Age__c","type":"Number","required": false}] .” This would teach

the AI the exact JSON shape and increase accuracy.

Model Selection: Use the most suitable model available. GPT-4 is excellent but API calls are slower

(~2-3 seconds) and costlier; GPT-3.5 is faster/cheaper but may need more careful prompt

engineering. Salesforceʼs in-house CodeGen model (via Agentforce) might be an option if it can be

Generative AI Integration for Dynamic LWC Form Building

Page 16 of 23

https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=The%20Sample
https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=I%27ve%20also%20tried%20to%20make,literal%20for%20some%20other%20reason
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

invoked; itʼs tuned for code but possibly accessible only in dev tools, not via API yet. If using the LLM

Open Connector in Salesforce, one could connect an open-source model or a specialty model to the

org and call it similarly (Source: developer.salesforce.com)(Source: developer.salesforce.com).

Result Validation: Always validate the output from the LLM before using it. In our case, we did JSON

parsing in a try/catch. Further validation could include checking that each field has necessary

properties and that the apiName seems valid (maybe cross-check against the Describe info of the

object via getObjectInfo wire adapter, to ensure the field exists). This could prevent scenarios

where the AI invents a field name that doesnʼt exist. A robust implementation might call

getObjectInfo({objectApiName: 'Contact'}) and filter the AI fields against the actual fields on

Contact, flagging or removing any unrecognized ones. This keeps the form builder from producing

unusable forms and adds a layer of trust (much like the Einstein Trust Layer does – verifying and

grounding AI outputs to real CRM data (Source: salesforce.com)(Source: salesforce.com)).

Security and Ethical Considerations

When integrating an LLM into Salesforce, governance and security are paramount:

Data Privacy: Our use case sends field names and user instructions to an external AI service. We

must ensure no sensitive customer data is sent. In our design, weʼre only sending the text of the

prompt (which might mention objects or field intents, but not actual data records). This is relatively

safe, but if a user prompt accidentally included real data (“create fields for credit card number 4111-

xxxx…”), that would be a leak. Always educate users on what not to include in prompts, or employ

input filters.

LLM Output Trustworthiness: Since the LLM is essentially coding on our behalf, mistakes can

happen. The AI might suggest a field that violates compliance (e.g., a field for “Social Security

Number” without proper security). It might also misname fields (e.g., using "EmailAddress" instead

of "Email" for Contactʼs email). Human oversight is needed, especially if this form generator were to

be used in an automated pipeline. We likely keep a human in the loop for reviewing the AI-generated

form before deploying it in a real app.

Einstein Trust Layer: If using Salesforceʼs native generative AI (Agentforce), the platform provides a

Trust Layer that monitors and moderates prompts and responses for sensitive info, bias, etc., and

ensures the AI only accesses authorized data (Source: salesforce.com). When rolling your own

integration with third-party LLMs, you take on the responsibility to implement guardrails. This might

include: capping the prompt length to avoid super long inputs, stripping out any personally

Generative AI Integration for Dynamic LWC Form Building

Page 17 of 23

https://developer.salesforce.com/blogs/2024/10/build-generative-ai-solutions-with-llm-open-connector#:~:text=2024%20%20to%20give%20customers,the%20Salesforce%20LLM%20Open%20Connector
https://developer.salesforce.com/blogs/2024/10/build-generative-ai-solutions-with-llm-open-connector#:~:text=The%20goal%20of%20the%20Salesforce,in%20Einstein%20Studio%20Model%20Builder
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Rather%20than%20generating%20UI%20from,configured%20in%20your%20Salesforce%20instance
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=speaking%20,sharing%20rules%20and%20permissions
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=A%20Trust
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

identifiable information (PII) that might be inadvertently included, and using content filtering on the

response if the LLM could return inappropriate text (less an issue for our structured JSON response,

but something to consider if expanding to generating help text or labels).

API Limits and Performance: LLM API calls add latency. Our user has to wait a moment for the form

to generate. We show a spinner to manage expectation. In a production scenario, model inference

might take a few seconds; GPT-4 especially can be slower. We should handle timeouts or failures

gracefully. Also, respect usage limits – if making many calls (e.g., if this is available to lots of users),

implement caching of results for identical prompts or restrict usage to prevent hitting rate limits/cost

overruns.

Challenges and Future Enhancements

Building a generative form builder is cutting-edge, and there are a few challenges we encountered or

foresee:

Natural Language Understanding: Users might phrase requests in countless ways. “Create a phone

and email input for contacts” is straightforward, but someone might say “I need a Contact form with

fields for phone (make it required) and the contactʼs email address. Also add a field for birthdate.”

The LLM must parse this correctly. Complex instructions increase the chance of error. An

enhancement could be using a two-step approach: first use the LLM to extract a structured

specification (like identify the object = Contact, fields = [Phone (required), Email (required), Birthdate

(not required, date field)]) and then feed that to a code generator prompt. This could be done with

the same model or different ones. However, this complicates the flow. We chose a one-shot prompt

to directly return JSON. Fine-tuning or few-shot prompting could improve comprehension of various

phrasings.

Generating Component Code vs JSON: We opted for JSON form definitions for easy rendering.

Alternatively, we could ask the LLM: “Write the code for an LWC component that has a phone and

email input for a Contact, with appropriate validation.” It might then return a <template> snippet

and a JS class. Incorporating that directly into the org would require developer action (copy-pasting

into a new component file) or, in theory, using the Metadata API to create a new LWC bundle on the

fly – which is quite complex and not real-time. For now, the JSON approach with a generic renderer is

more feasible. In the future, as Salesforce evolves tools like Agentforce in Code Builder, one can

imagine an end-to-end flow where an AI agent not only writes the code but also deploys it in a

DevOps process. Indeed, Salesforceʼs vision is moving that direction with conversational

programming tools (Source: getgenerative.ai).

Generative AI Integration for Dynamic LWC Form Building

Page 18 of 23

https://www.getgenerative.ai/top-ai-tools-every-salesforce-developer-should-know/#:~:text=Einstein%20for%20Developers%20in%20Code,Builder
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Dynamic Form vs Static Code: Our solution dynamically creates the form at runtime for immediate

use. If a developer wants to solidify this form as a standalone LWC, they could use the output as a

blueprint. One might even extend the form builder LWC to have an “Export Code” button that takes

fieldConfigs and inserts them into a template string for a new component code, which the

developer can then copy. This merges the metadata approach with traditional code output for long-

term maintenance.

Validation Rules and Complex Logic: We mostly handled simple validations (required, format). If

the user prompt includes something like “and add validation that phone must be 10 digits”, the LLM

could include a regex or some logic in the JSON (maybe a field property "pattern": "^[0-9]

{10}$"). Our renderer could apply that by setting pattern={field.pattern} on lightning-input or

using a regex test in onblur. More complex logic (e.g., cross-field validation: "if Country is US, State

is required") would require the AI to express conditional rules. This starts to approach a full form

definition language. At that point, handing off to a developer might be wise. Still, itʼs possible to

extend the JSON schema to include a validationRules array and have the LWC evaluate them –

essentially re-implementing some logic of Salesforce Validation Rules on client side. UpCRMʼs article

hints at such possibilities, like field visibility rules and conditional defaults being part of JSON

schema for forms (Source: up-crm.com)(Source: up-crm.com). A generative system could populate

those too if prompted properly.

User Experience for Non-Developers: While this tool is great for developers or power users (it

speaks JSON and LWC under the hood), one could envision a point-and-click UI on top of it for

admins: e.g., an admin types “Add a field for Date of Birth to the contact intake form”, and behind the

scenes the LLM could output the needed JSON which the dynamic form component then includes.

This is akin to what Salesforceʼs Prompt Builder allows in some contexts – using natural language

to modify parts of the app. Generative Canvas (pilot) is indeed targeting admins and end-users to

create views by asking for them in plain language (Source: salesforce.com)(Source: salesforce.com).

Our example is a narrower scope but follows the same trajectory: AI-driven customization of the UI

with minimal clicks.

Conclusion

Building a generative AI-driven form builder for Lightning Web Components showcases the synergy

between LLMs and the Salesforce platform to boost developer productivity. We demonstrated how a

userʼs simple request in natural language can be turned into a working LWC form through a combination

of Apex callouts, intelligent prompting, and dynamic UI rendering. The solution adheres to a simplicity-

first philosophy – much like the one behind the lightweight formula tester page – by abstracting complex

code-writing into an easy conversational interface (Source: buzzard37.rssing.com).

Generative AI Integration for Dynamic LWC Form Building

Page 19 of 23

https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Image
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=surface%20key%20insights%2C%20and%20address,and%20user%20at%20your%20company
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Whether%20you%E2%80%99re%20a%20salesperson%20preparing,right%20guidance%2C%20visualization%2C%20and%20automation
https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=The%20Sample
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

By leveraging dynamic, metadata-defined forms (Source: up-crm.com) and the power of LLMs trained on

vast coding knowledge, Salesforce professionals can drastically cut down the time required to scaffold

new forms or pages. This approach also reduces errors (the AI provides boilerplate that we can validate)

and encourages experimentation (since trying a new form setup is as quick as typing a new sentence).

However, itʼs important to approach this innovation with the right checks and balances: always review AI

outputs for correctness, use secure integration patterns (like Named Credentials for API

keysiandrosov.github.ioiandrosov.github.io), and keep humans in control of the final deployment.

Generative AI is a co-pilot, not an autopilot – it accelerates development while you steer.

In practice, a generative form builder could be an invaluable tool for hackathons, prototyping, or even

empowering consultants/admins to draft UI ideas without deep coding. With Salesforceʼs continued

investment in generative AI (from Agentforce for code to Einstein GPT for CRM to Generative Canvas for

UX (Source: salesforce.com)(Source: salesforce.com)), itʼs clear that conversational development is part

of the platformʼs future. By building solutions like this LWC form builder today, youʼre gaining experience

with the paradigms that will likely become mainstream tomorrow.

References:

Bob Buzzard (Keir Bowden), Spring ʼ25 – Dynamic Forms Template Mode, Bob Buzzard Blog –

Describes a formula tester LWC page and emphasizes a simple UI with helpful automation (Source:

buzzard37.rssing.com)(Source: buzzard37.rssing.com).

Nataliia Veretenina, Making LWC forms smarter: Metadata-Driven dynamic forms, UpCRM Blog

(2025) – Explains the approach of defining forms in JSON and rendering dynamically in LWC,

enabling one engine to serve many forms (Source: up-crm.com)(Source: up-crm.com).

Gemini AI API with LWC: File Analysis, Salesforce Diaries (2025) – Tutorial by Sanket Kumar

demonstrating calling a generative AI (Googleʼs Gemini) directly from LWC with fetch() , with

considerations for security and performance (Source: salesforcediaries.com)(Source:

salesforcediaries.com).

Igor Androsov, Using Salesforce Named Credentials for ChatGPT API, Personal Blog (2023) –

Guides how to securely integrate with OpenAIʼs API from Apex using External Credentials and Named

Credential (API Key in header)iandrosov.github.ioiandrosov.github.io.

Kamal Thakur, Salesforce ChatGPT Integration using Apex, DreamInForce (2024) – Provides an

example of an Apex class making a chat completion call to OpenAI and parsing the response,

illustrating how to structure the request and handle the reply (Source: dreaminforce.com)(Source:

dreaminforce.com).

Generative AI Integration for Dynamic LWC Form Building

Page 20 of 23

https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Instead%20of%20hardcoding%20form%20structure%2C,Here%E2%80%99s%20how%20it%20works
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=AI%20is%20transforming%20how%20we,they%20can%20be%20to%20use
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Introducing%20the%20new%20Salesforce%20Generative,trends%2C%20and%20other%20Lightning%20components
https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=The%20Sample
https://buzzard37.rssing.com/chan-8558114/latest.php#:~:text=I%27ve%20also%20tried%20to%20make,literal%20for%20some%20other%20reason
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Instead%20of%20hardcoding%20form%20structure%2C,Here%E2%80%99s%20how%20it%20works
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=,Apex%20and%20LWC
https://salesforcediaries.com/2025/07/13/gemini-ai-api-with-lwc-file-analysis/#:~:text=,validation%2C%20and%20data%20protection%20measures
https://salesforcediaries.com/2025/07/13/gemini-ai-api-with-lwc-file-analysis/#:~:text=async%20callGeminiAPI%28%29%20,isLoading%20%3D%20true
https://www.dreaminforce.com/salesforce-chatgpt-integration-using-apex/#:~:text=Salesforce%20ChatGPT%20Integration%20Apex%20Code
https://www.dreaminforce.com/salesforce-chatgpt-integration-using-apex/#:~:text=This%20example%20shows%20how%20to,site%20in%20remote%20site%20settings
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Salesforce Developers Blog (Oct 2024), Build Generative AI Solutions with LLM Open Connector –

Announces Salesforceʼs LLM Open Connector, enabling any LLM integration and referencing how

BYO LLM can be used with prompt templates and Apex (Source: developer.salesforce.com)(Source:

developer.salesforce.com).

Salesforce Official Blog (Oct 2024), Introducing Generative Canvas for Lightning – Describes a

pilot feature where entire UIs are generated via LLMs, highlighting Salesforceʼs vision for dynamic,

AI-created user experiences and the importance of trust and guardrails (Source: salesforce.com)

(Source: salesforce.com).

Top AI Tools Every Salesforce Developer Should Know in 2025, GetGenerative.ai (2025) – Lists

tools like Agentforce for Developers, noting its capability of natural language to Apex/LWC code

generation and how itʼs built on Salesforceʼs CodeGen models with the Einstein Trust Layer (Source:

getgenerative.ai)(Source: getgenerative.ai).

By combining insights from these sources with practical development techniques, weʼve illustrated a

comprehensive, professional approach to building an AI-driven form builder in Salesforce. This fusion of

LWC and LLM technologies not only streamlines development but also heralds a new mode of interacting

with the platform – one where “clicks vs code” might soon include “prompts” as a third way to create

Salesforce solutions (Source: up-crm.com). The future of low-code may well be natural language!

Tags: generative ai, lwc, salesforce, llm, form builder, ai integration, apex

About Cirra

About Cirra AI

Cirra AI is a specialist software company dedicated to reinventing Salesforce administration and delivery through

autonomous, domain-specific AI agents. From its headquarters in the heart of Silicon Valley, the team has built the

Cirra Change Agent platform—an intelligent copilot that plans, executes, and documents multi-step Salesforce

configuration tasks from a single plain-language prompt. The product combines a large-language-model

reasoning core with deep Salesforce-metadata intelligence, giving revenue-operations and consulting teams the

ability to implement high-impact changes in minutes instead of days while maintaining full governance and audit

trails.

Cirra AIʼs mission is to “let humans focus on design and strategy while software handles the clicks.” To

achieve that, the company develops a family of agentic services that slot into every phase of the change-

management lifecycle:

Requirements capture & solution design – a conversational assistant that translates business

requirements into technically valid design blueprints.

Generative AI Integration for Dynamic LWC Form Building

Page 21 of 23

https://developer.salesforce.com/blogs/2024/10/build-generative-ai-solutions-with-llm-open-connector#:~:text=Builder
https://developer.salesforce.com/blogs/2024/10/build-generative-ai-solutions-with-llm-open-connector#:~:text=The%20goal%20of%20the%20Salesforce,in%20Einstein%20Studio%20Model%20Builder
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Introducing%20the%20new%20Salesforce%20Generative,trends%2C%20and%20other%20Lightning%20components
https://www.salesforce.com/blog/generative-canvas-lightning/#:~:text=Rather%20than%20generating%20UI%20from,configured%20in%20your%20Salesforce%20instance
https://www.getgenerative.ai/top-ai-tools-every-salesforce-developer-should-know/#:~:text=Agentforce%20for%20Developers%20is%20a,LWC
https://www.getgenerative.ai/top-ai-tools-every-salesforce-developer-should-know/
https://www.up-crm.com/making-apex-smarter-the-power-of-metadata-driven-dynamic-forms#:~:text=Metadata,term%20investment
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

Automated configuration & deployment – the Change Agent executes the blueprint across sandboxes

and production, generating test data and rollback plans along the way.

Continuous compliance & optimisation – built-in scanners surface unused fields, mis-configured sharing

models, and technical-debt hot-spots, with one-click remediation suggestions.

Partner enablement programme – a lightweight SDK and revenue-share model that lets Salesforce SIs

embed Cirra agents inside their own delivery toolchains.

This agent-driven approach addresses three chronic pain points in the Salesforce ecosystem: (1) the high cost of

manual administration, (2) the backlog created by scarce expert capacity, and (3) the operational risk of

unscripted, undocumented changes. Early adopter studies show time-on-task reductions of 70-90 percent for

routine configuration work and a measurable drop in post-deployment defects.

Leadership

Cirra AI was co-founded in 2024 by Jelle van Geuns, a Dutch-born engineer, serial entrepreneur, and 10-year

Salesforce-ecosystem veteran. Before Cirra, Jelle bootstrapped Decisions on Demand, an AppExchange ISV

whose rules-based lead-routing engine is used by multiple Fortune 500 companies. Under his stewardship the

firm reached seven-figure ARR without external funding, demonstrating a knack for pairing deep technical

innovation with pragmatic go-to-market execution.

Jelle began his career at ILOG (later IBM), where he managed global solution-delivery teams and honed his

expertise in enterprise optimisation and AI-driven decisioning. He holds an M.Sc. in Computer Science from Delft

University of Technology and has lectured widely on low-code automation, AI safety, and DevOps for SaaS

platforms. A frequent podcast guest and conference speaker, he is recognised for advocating “human-in-the-loop

autonomy”—the principle that AI should accelerate experts, not replace them.

Why Cirra AI matters

Deep vertical focus – Unlike horizontal GPT plug-ins, Cirraʼs models are fine-tuned on billions of

anonymised metadata relationships and declarative patterns unique to Salesforce. The result is context-

aware guidance that respects org-specific constraints, naming conventions, and compliance rules out-of-

the-box.

Enterprise-grade architecture – The platform is built on a zero-trust design, with isolated execution

sandboxes, encrypted transient memory, and SOC 2-compliant audit logging—a critical requirement for

regulated industries adopting generative AI.

Partner-centric ecosystem – Consulting firms leverage Cirra to scale senior architect expertise across

junior delivery teams, unlocking new fixed-fee service lines without increasing headcount.

Road-map acceleration – By eliminating up to 80 percent of clickwork, customers can redirect scarce

admin capacity toward strategic initiatives such as Revenue Cloud migrations, CPQ refactors, or data-model

rationalisation.

Future outlook

Cirra AI continues to expand its agent portfolio with domain packs for Industries Cloud, Flow Orchestration, and

MuleSoft automation, while an open API (beta) will let ISVs invoke the same reasoning engine inside custom UX

extensions. Strategic partnerships with leading SIs, tooling vendors, and academic AI-safety labs position the

Generative AI Integration for Dynamic LWC Form Building

Page 22 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

company to become the de-facto orchestration layer for safe, large-scale change management across the

Salesforce universe. By combining rigorous engineering, relentlessly customer-centric design, and a clear ethical

stance on AI governance, Cirra AI is charting a pragmatic path toward an autonomous yet accountable future for

enterprise SaaS operations.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. Cirra shall not be liable

for any damages arising from the use of this document. This content may include material generated with assistance from

artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical information independently.

All product names, trademarks, and registered trademarks mentioned are property of their respective owners and are used

for identification purposes only. Use of these names does not imply endorsement. This document does not constitute

professional or legal advice. For specific guidance related to your needs, please consult qualified professionals.

Generative AI Integration for Dynamic LWC Form Building

Page 23 of 23

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/generative-ai-lwc-form-builder

