
Architecting an LLM-Based Salesforce CDC
Monitoring System
Published August 10, 2025 55 min read

AI-Enhanced Salesforce CDC Monitoring
Dashboard

Introduction

Salesforce Change Data Capture (CDC) provides a real-time stream of data change events from the

Salesforce platform. By integrating these CDC events with a Large Language Model (LLM) backend (such

as OpenAI GPT-4 or Anthropic Claude), enterprises can create an AI-enhanced monitoring dashboard

that proactively watches data changes, summarizes activity, detects anomalies, and generates human-

readable alerts and reports. This report explores the architecture and workflows of such a system,

including:

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 1 of 26

https://cirra.ai/articles/salesforce-agentforce-ai-agents
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Salesforce CDC overview: how Salesforce publishes change events for record create/update/delete

operations and how those events can be captured in real time.

Integration strategies: methods to stream CDC data to an external system, using Salesforce

streaming APIs, the Pub/Sub API, event bus relays, or middleware, forming the pipeline into an AI

monitoring system.

Architecture & workflow: the end-to-end design combining Salesforce CDC with an LLM backend –

from event emission and ingestion, to LLM-driven analysis, to the dashboard/UI layer.

Summarizing stream activity with LLMs: techniques to have an LLM condense large volumes of

change events into concise summaries or insights.

Anomaly detection and alerting: how to detect spikes or outliers in the data stream (using

traditional methods and LLM intelligence) and how LLMs can interpret and enhance these alerts with

context.

Automated incident reports: using LLMs to turn raw event data into human-readable incident

reports or post-mortems automatically.

Proactive monitoring mindset: a reflection on how this approach aligns with the proactive, real-

time monitoring philosophy championed in Salesforce community discussions (e.g. Londonʼs Calling).

Enterprise considerations: ensuring the solution is enterprise-grade – scalable to high event

volumes, secure in data handling, and observable (with proper logging/metrics for the pipeline itself).

Throughout the report, we will reference tools, libraries, and services that can be used to implement such

a system (e.g. Salesforce streaming APIs, Apache Kafka, AWS EventBridge, OpenAI APIs, etc.), providing

detailed citations from reputable sources.

Understanding Salesforce Change Data Capture (CDC)

Salesforce Change Data Capture is a publish/subscribe mechanism for Salesforce record changes.

Whenever a record is created, updated, deleted, or undeleted in Salesforce, a change event is published

to the platformʼs event bus resources.docs.salesforce.com(Source: thecloudfountain.com). These

change event messages contain all the new or changed fields of the record, along with header metadata

about the change (such as the type of operation and origin of the change) (Source:

thecloudfountain.com). Subscribers can receive these events in near real-time to know exactly what

changed in Salesforce without continuously polling the APIs (Source: useready.com). In essence, CDC

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 2 of 26

https://cirra.ai/articles/generative-ai-lwc-form-builder
https://cirra.ai/articles/generative-ai-trailhead-module-creation
https://cirra.ai/articles/salesforce-conferences-events-2025-overview
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Receive%20near,IN%20THIS%20SECTION
https://www.thecloudfountain.com/platform-events-vs-push-topic-vs-change-data-capture/#:~:text=Now%20finally%20we%20move%20onto,contain%20information%20about%20the%20change
https://www.thecloudfountain.com/platform-events-vs-push-topic-vs-change-data-capture/#:~:text=Now%20finally%20we%20move%20onto,contain%20information%20about%20the%20change
https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc#:~:text=Change%20Data%20Capture%20in%20Salesforce,to%20know%20about%20such%20changes
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

turns Salesforce into an event-driven architecture: changes in the database trigger asynchronous event

notifications that external systems can react to immediately, rather than relying on periodic data sync

jobs.

Key features of Salesforce CDC include:

Comprehensive change events: A CDC event (sometimes called a ChangeEvent message)

captures field-level changes and metadata. The notification includes all modified fields and can even

indicate which fields were changed to null or which large text fields were delivered as diffs (Source:

thecloudfountain.com)resources.docs.salesforce.com. This provides a complete picture of the

record change.

Standard and custom objects: CDC supports all custom objects and many standard objects.

Standard objects have events named <StandardObject>ChangeEvent (e.g. AccountChangeEvent),

and custom objects use <CustomObject>__ChangeEvent (Source: salesforceben.com). Admins

enable CDC for the objects they care about (in Setup) and Salesforce then begins publishing events

for those objectsʼ changes (Source: salesforceben.com)(Source: salesforceben.com). If CDC is not

enabled for an object, subscribing to its change event channel will result in an error (Source:

salesforceben.com).

Near real-time delivery: The events are delivered almost instantly after the transaction commits in

Salesforce. Salesforceʼs event bus pushes the change notifications to subscribers within seconds,

ensuring external systems have up-to-date data “because the changes are received in near real

time” and external data stores stay fresh resources.docs.salesforce.com. This is far more efficient

than polling Salesforce for changes.

Event retention and replay: Salesforce stores change events for 72 hours. If a subscriber is offline

or loses connection, it can replay missed events from the past 3 days using a replay ID or through the

Pub/Sub APIʼs replay mechanism resources.docs.salesforce.com. This guarantees more reliable

delivery and recovery from interruptions.

Scale and throughput: The CDC system is designed for high volume. Salesforce notes that an

integration app can receive millions of events per day via CDC resources.docs.salesforce.com. The

underlying platform ensures events are delivered with low latency and can handle large bursts of

changes (with mechanisms like transaction batching where multiple record changes in one

transaction can be merged into a single event for efficiency resources.docs.salesforce.com).

Subscription methods: External clients can subscribe to CDC events through several methods – the

older Streaming API (CometD) or the newer Pub/Sub API – as well as internally via Apex

triggersresources.docs.salesforce.com. The CometD approach uses a Bayeux protocol (long polling)

channel like /data/AccountChangeEvent , whereas the Pub/Sub API is a gRPC-based API that

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 3 of 26

https://cirra.ai/articles/model-context-protocol-ai-tool-integration
https://www.thecloudfountain.com/platform-events-vs-push-topic-vs-change-data-capture/#:~:text=basically%20a%20Change%20Data%20Capture,contain%20information%20about%20the%20change
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=match%20at%20L627%20Available%20in,changed%20to%20null%20in%20an
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=Note%3A%20For%20standard%20objects%2C%20it%E2%80%99s,
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=A%20change%20data%20capture%20,deleted
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=Generic%20Subscriptions%20radio%20button,and%20press%20the%20Subscribe%20button
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=Furthermore%2C%20if%20you%20try%20to,you%20will%20get%20an%20error
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=custom%20object%20records%20from%20Salesforce,level%20security%20enable%20secure
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Change%20Data%20Capture%20enables%20secure,secure%20event%20storage%20and%20communication
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Change%20Data%20Capture%20enables%20secure,secure%20event%20storage%20and%20communication
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=notifications%20ensures%20that%20your%20external,object%20type%20during%20one%20second
https://cirra.ai/articles/salesforce-mcp-servers-technical-guide
https://cirra.ai/articles/ai-dynamic-formulas-apex
https://cirra.ai/articles/ai-dynamic-formulas-apex
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Use%20Change%20Data%20Capture%20to%3A,level%20security
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

delivers events in binary Avro format for higher efficiency

resources.docs.salesforce.comresources.docs.salesforce.com. The Pub/Sub API, now generally

available, is Salesforceʼs recommended mechanism for new integrations, as it provides one unified

API to publish/subSCRIBE events and fetch schemas, with better throughput control

resources.docs.salesforce.com(Source: architect.salesforce.com).

Security and field access: CDC events are securely delivered – they are encrypted in transit and

respect field-level security. Notably, change events bypass record-level sharing rules (so subscribers

get events for changes even if the user performing the change couldnʼt see all records), ensuring

broad access to data changes, which is useful for integration scenarios

resources.docs.salesforce.com. However, fields that the subscribing user is not permitted to see

(due to Field-Level Security) will be omitted from the event, meaning the integration userʼs profile

should have access to all needed fields resources.docs.salesforce.com. This security design allows

external systems to get a complete stream of changes while still honoring Salesforceʼs permission

models for sensitive fields.

In summary, Salesforce CDC provides a robust, scalable event stream of all relevant data changes in

Salesforce, which external systems can tap into for real-time synchronization and monitoring. Instead of

doing periodic data extracts or listening to specific PushTopic queries, CDC gives a firehose of changes.

This is the foundation for our AI-enhanced monitoring dashboard: a continuous feed of Salesforce

changes that we can analyze and watch intelligently.

Streaming CDC Events into an AI Monitoring System

To leverage CDC events in an AI-powered dashboard, we first need to stream those events out of

Salesforce and into our monitoring pipeline. There are several integration strategies to accomplish

this, ranging from using Salesforceʼs APIs directly to employing middleware or cloud services. Below we

outline key strategies and tools for capturing the CDC stream:

Using the Salesforce Streaming API (CometD): The Salesforce Streaming API allows clients to

subscribe to channels (topics) using the Bayeux protocol (CometD). With CDC, each objectʼs change

events are exposed on a channel like /data/<Object>ChangeEvent . A client library (such as

Salesforceʼs EMP Connector for Java or JavaScript CometD libraries) can subscribe to these

channels and receive event messages in JSON as they arrive (Source: salesforceben.com). For

example, subscribing to /data/AccountChangeEvent will yield a stream of account record change

events. Salesforce provides a sample EMP Connector that handles long polling and re-

authentication, simplifying the subscriber implementation (itʼs essentially a thin wrapper over

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 4 of 26

https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=match%20at%20L1099%20Subscribe%20with,Based%20on%20gRPC%20and
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Note%3A%20In%20a%20Pub%2FSub%20API,the%20ChangeEventHeader%20and%20record%20fields
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Subscribe%20with%20Pub%2FSub%20API%20Use,Based%20on%20gRPC%20and
https://architect.salesforce.com/decision-guides/event-driven#:~:text=,PushTopic%20and%20Generic%20Events%20within
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=%E2%80%A2%20Subscribe%20using%20CometD%2C%20Pub%2FSub,level%20security
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=%E2%80%A2%20Subscribe%20using%20CometD%2C%20Pub%2FSub,level%20security
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=Accept%20the%20requested%20permissions%2C%20then,and%20press%20the%20Subscribe%20button
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

CometD) (Source: developer.salesforce.com). This approach is code-intensive but gives full control –

you might write a Node.js service or Java service that connects to Salesforceʼs streaming endpoint,

listens for events, and then forwards them to your AI processing component.

Using the Pub/Sub API (gRPC): Salesforceʼs Pub/Sub API is a newer alternative to CometD for

event subscriptions. It uses gRPC (over HTTP/2) and delivers events in a binary Avro format, which

can be more efficient for high throughput resources.docs.salesforce.com. The Pub/Sub API provides

RPC methods to subscribe to events and to retrieve the schema of event messages

resources.docs.salesforce.comresources.docs.salesforce.com. One can use Salesforceʼs provided

gRPC stubs (or OpenAPI interface) to integrate. The advantage is performance and unified API (the

same API can handle platform events, CDC, and real-time monitoring events) (Source:

architect.salesforce.com). This is suitable for enterprise use-cases where millions of events must be

handled reliably. For instance, a microservice written in Java or Python can use the Pub/Sub API to

subscribe to CDC events and then route them to the next stage (ensuring it processes at a rate that

matches event volume, since Pub/Sub API lets the client control flow by pulling batches of

messages) resources.docs.salesforce.com.

Event Relay to a Cloud Message Bus: Salesforce now offers a native Event Relay feature that can

forward events (platform events or CDC events) directly to external message buses like AWS

EventBridge in real-time (Source: architect.salesforce.com). This is a “low-code” integration: with a

few setup steps, Salesforce will automatically stream events to an AWS EventBridge partner event

bus (only AWS is supported as of now). In a real-world case, Realtor.comʼs tech team enabled Event

Bus Relay to pipe Salesforce events into AWS, eliminating the need for custom polling or heavy

middleware (Source: techblog.realtor.com). Once in EventBridge, the events can be routed to AWS

services (Lambda, SQS, Kinesis, etc.) for processing (Source: techblog.realtor.com). This strategy is

attractive if your monitoring dashboard is built on AWS infrastructure – Salesforce pushes the CDC

events to EventBridge, from which you can trigger an AWS Lambda function that invokes the LLM or

logs data. It provides a decoupled, serverless integration that is real-time, decoupled, observable,

and scalable as required by modern architectures (Source: techblog.realtor.com)(Source:

techblog.realtor.com). (Event relays reduce the need to manage long-lived connections from your

own server and leverage cloud-native routing of events.)

Middleware and Connectors (MuleSoft, Kafka, etc.): If your enterprise uses an integration

platform or messaging system, there are connectors to bring in Salesforce CDC data. For example,

MuleSoft Anypoint (Salesforceʼs integration platform) has connectors for the Streaming API and can

subscribe to CDC events as a source in a flow. Similarly, Confluent Kafka provides a Salesforce CDC

Source Connector that can subscribe to platform events/CDC and publish them into Kafka topics

(Source: medium.com)(Source: medium.com). These connectors often require configuration and

might have limitations; one team noted that the Confluent CDC connector had subscription and

throughput constraints – when faced with millions of records, they had to implement a custom

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 5 of 26

https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm#:~:text=Example%3A%20Subscribe%20to%20and%20Replay,The
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Subscribe%20with%20Pub%2FSub%20API%20Use,Based%20on%20gRPC%20and
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=integrate%20your%20systems,Based%20on%20gRPC%20and
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=You%20can%20get%20the%20event,SchemaInfo
https://architect.salesforce.com/decision-guides/event-driven#:~:text=,PushTopic%20and%20Generic%20Events%20within
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=match%20at%20L1099%20Subscribe%20with,Based%20on%20gRPC%20and
https://architect.salesforce.com/decision-guides/event-driven#:~:text=events.%20Pro,defined%20SOQL%20query.%20Hybrid
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=Step%202%3A%20Use%20Salesforce%20Event,Bus%20Relay
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=Step%203%3A%20Route%20Events%20Using,EventBridge
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=We%20wanted%20a%20solution%20that,was
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=The%20right%20solution%20would%20allow,We%20wanted%20to
https://medium.com/@kris_22373/integrating-salesforce-in-an-event-driven-architecture-56865ff50c91#:~:text=can%20find%20the%20relevant%20documentation,here
https://medium.com/@kris_22373/integrating-salesforce-in-an-event-driven-architecture-56865ff50c91#:~:text=The%20Salesforce%20Source%20connector%20can,way%20to%20monitor%20Salesforce%20records
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

polling fallback (Source: medium.com)(Source: medium.com). Another lightweight option is Airbyte,

an open-source ETL platform, which has a Salesforce CDC connector (Airbyteʼs tutorial shows

capturing CDC in a pipeline) (Source: airbyte.com). Using such middleware can accelerate

development by handling subscriptions, batching, and reconnection logic out-of-the-box, but be

mindful of their performance ceilings (Source: techblog.realtor.com).

Direct API polling (fallback scenario): In scenarios with extremely high data change volume or

when real-time isnʼt required, some integrations resort to periodic polling of the Salesforce Bulk APIs

to fetch changed records (using system-mod stamps or the Get Updated SOAP API). This is

generally not preferred (itʼs what CDC is meant to replace). For instance, one integration team

initially tried polling every 30 seconds for changes because the out-of-box connector couldnʼt

handle their million-record updates (Source: medium.com). While polling can be combined with an

LLM (e.g., fetch diffs and then summarize), it loses the immediacy and efficiency of true event

streams. We mention it only as a contingency – the focus should remain on event-driven inputs.

Data Pipeline into the AI System: Once CDC events are being captured by one of the above methods,

they typically flow into a data pipeline for processing. Many architectures use a message queue or stream

processor as a buffer between Salesforce and the AI analysis. For example, if using Kafka, your

Salesforce subscriber (via CometD or connector) can publish each change event to a Kafka topic

(perhaps partitioned by object type). From there, downstream consumers can independently process the

events – one consumer might be an LLM analysis service, another might be a storage sink. Using a

durable queue or stream ensures that if the AI service is temporarily slow or offline, events are not lost

but buffered. It also allows scaling: multiple instances of an AI worker can consume from the stream in

parallel if needed. Salesforce CDC is often paired with technologies like Apache Kafka or Apache Spark

Structured Streaming to handle high-volume event processing (Source: useready.com)(Source:

useready.com). These frameworks can be used to perform preliminary aggregation or filtering on the

firehose of events before invoking the LLM (for example, Spark could group a burst of 1000 small

changes into a summary for the LLM to process as one batch, reducing API calls). The pipeline design will

depend on requirements: some use a simple serverless function per event, others a full streaming data

platform for complex processing.

https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc

Figure: Salesforce event streaming integration – example of publishing Salesforce events to an external

message system (Kafka). Salesforce CDC events are consumed by a subscriber (using Streaming API or

Pub/Sub API) and then forwarded as messages (topics) into an event hub (Kafka cluster in this diagram)

for downstream processing 28† . This decouples Salesforce from the AI analysis: the LLM service can

consume events from the queue at its own pace.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 6 of 26

https://medium.com/@kris_22373/integrating-salesforce-in-an-event-driven-architecture-56865ff50c91#:~:text=For%20example%2C%20the%20connector%E2%80%99s%20limits,one%20million%20customers%20in%20Salesforce
https://medium.com/@kris_22373/integrating-salesforce-in-an-event-driven-architecture-56865ff50c91#:~:text=Salesforce%20and%20Kafka%20at%20a,one%20million%20customers%20in%20Salesforce
https://airbyte.com/data-engineering-resources/salesforce-change-data-capture#:~:text=Salesforce%20CDC%20,that%20will%20revolutionize%20your%20business
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=,around%20throughput%2C%20customization%2C%20and%20observability
https://medium.com/@kris_22373/integrating-salesforce-in-an-event-driven-architecture-56865ff50c91#:~:text=For%20example%2C%20the%20connector%E2%80%99s%20limits,one%20million%20customers%20in%20Salesforce
https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc#:~:text=act%20on%20their%20data.%20Real,time%20data%20pipeline
https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc#:~:text=Capture%20%28CDC%29%20facilitates%20real,time%20data%20pipeline
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

In the above figure, the “Consumer API/Subscriber” could be a custom service (or managed connector)

that listens to Salesforce and then publishes each event to Kafka. A similar pattern could be implemented

with AWS EventBridge or Azure Event Hubs in place of Kafka, or with an integration platform like MuleSoft

acting as the bridge.

To summarize integration options: Salesforce provides the real-time feed, and you have flexibility in

how to catch and route that feed into your AI system. Whether itʼs a direct CometD client pushing into

your application, a Pub/Sub API consumer running in a container, or a no-code event relay to a cloud

messaging service, the goal is to reliably stream the CDC events so that the next layer – the AI/LLM

backend – can consume them. Next, weʼll discuss the architecture of combining these events with an

LLM and how the data flows through the system.

Architecture and Workflow of the CDC + LLM Dashboard

Bringing together Salesforce CDC and an LLM requires an architecture that can ingest the event stream,

apply AI analysis, and present results to users. At a high level, the system involves the following

components: (1) Event Ingestion Layer – receiving Salesforce change events, (2) Processing & AI

Analysis Layer – where the LLM is invoked to analyze or summarize events, possibly along with

traditional analytics, and (3) Output & Visualization Layer – the monitoring dashboard UI, alerts, and

reports that end-users see. Below, we describe a reference architecture and the data flow through these

stages:

https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/

Figure: Example event-driven architecture for streaming Salesforce data changes into a processing

pipeline. In this example, Salesforce publishes events (CDC or platform events) which are relayed to an

external event bus (e.g. AWS EventBridge). Routing rules can filter or direct events to consumer

services. A serverless function (AWS Lambda here) processes each event and updates downstream

systems – in our scenario, this is where AI analysis would occur. The results can then be stored or sent to

internal systems and dashboards 33 † . This architecture is scalable, asynchronous, and resilient

(failures can be handled with retries or dead-letter queues).

In an AI-enhanced monitoring dashboard context, the flow would work as follows:

1. Salesforce CDC Event Emission: A change in Salesforce (say a new Contact is created or an

Opportunityʼs stage is updated) triggers a Change Event. This event is published to the Salesforce

event bus, carrying details of the change (Source: useready.com). The event sits in a Salesforce

queue until delivered out (or until retention expires, if never consumed).

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 7 of 26

https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc#:~:text=Change%20Data%20Capture%20in%20Salesforce,to%20know%20about%20such%20changes
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

2. Ingestion & Streaming: A subscriber (as discussed in the previous sectionʼs strategies) catches the

event. For instance, Salesforce might push the event to AWS EventBridge via Event Relay, or a

running subscriber app pulls it via the Streaming API. This piece decouples Salesforce from the rest –

it converts the proprietary Salesforce event into a message in the external environment. If using

EventBridge, the Salesforce ChangeEvent would now appear on a bus as a JSON message. If using

Kafka, it would be a message in a Kafka topic. At this point, basic routing can occur: for example,

EventBridge Rules or Kafka consumers can filter events by object type or content. One could route

certain object changes to specific AI modules (e.g., send Case changes to an AI that specializes in

support case analysis). The ingestion layer is also where youʼd implement observability for the

pipeline – e.g., logging event metadata (object, ID, timestamp) and counting events for monitoring

throughput.

3. AI Processing (LLM Backend Service): This is the heart of the system – one or more services that

leverage an LLM to analyze the stream of events. There are a few patterns for how the LLM might be

applied:

Real-time event interpretation: The simplest approach is to pass individual events (or small

batches) to an LLM to get immediate analysis. For example, when a change event arrives, invoke

an LLM API with a prompt like: “Explain this event: Account XYZ was updated with Annual

Revenue changing from $1M to $10M and Rating from Warm to Hot”. The LLM could then

produce a sentence like “Account ‘XYZʼ had a significant increase in Annual Revenue (from 1M to

10M) and was marked as a Hot prospect, indicating a major positive update.” This transforms a

raw event into a meaningful message. Realize, however, calling an LLM for each and every event

may be costly and unnecessary for minor changes – it might be better to aggregate or filter (see

next points).

Batch summarization (windowed processing): A more advanced technique is to accumulate

events over a time window or until certain conditions, and then prompt the LLM to summarize

the stream. For instance, the system might collect all CDC events over a 5-minute window and

then ask the LLM: “Summarize the key changes in the last 5 minutes: there were X Account

updates, Y new Opportunities, notable field changes..., etc.” This summarizes stream activity

and allows the LLM to identify patterns in the batch (e.g. “a spike of 20 account deletions

occurred in the last minute”). The summary could then be sent to the dashboard or an operator.

Techniques like this reduce the number of API calls – one call summarizes many events – at the

cost of a slight delay (batch interval) and complexity of grouping events. The LLMʼs strength in

natural language generation makes it adept at producing a concise narrative from a list of

changes, essentially doing what a human analyst might do when reviewing a log. We will detail

summarization strategies in the next section.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 8 of 26

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Anomaly detection and alerting: The AI processing layer can incorporate logic to detect

anomalies in the event stream – either by classical algorithms or by utilizing the LLMʼs

capabilities. For example, a monitoring service could track the volume of events per object or

certain field value changes and trigger an “anomaly alert” if something deviates significantly

(e.g., a surge in Opportunity amount changes at an odd hour). At that point, an LLM can be

invoked to explain or add context to the anomaly. The LLM might be given a prompt describing

the anomaly (e.g. “We observed 50 Account deletions in 5 minutes, which is 10x the normal rate.

Provide possible reasons or implications.”). The LLM, armed with its trained knowledge or

provided context, could respond with a useful analysis: “Such a spike in deletions could indicate

either a bulk data cleanup operation or potentially an integration error. If it was unintentional, it

might warrant investigation for a bug or malicious activity.” By doing this, the AI layer doesnʼt just

flag a numeric anomaly; it interprets it in plain English and potentially narrows down causes.

LLMs excel at this kind of contextual reasoning – unlike rigid threshold alerts, they can

incorporate semantics (e.g., understanding that a deletion spree right after a deployment could

be related to a known issue). We will discuss anomaly handling more soon.

Storage and state: Often the AI service will also store some state or context. For example, it

might maintain a cache or database of recent events or summaries. This could be used to

provide the LLM with context beyond a single event. Imagine an event arrives that “Opportunity

ABC stage changed from Proposal to Closed Lost”. The LLMʼs interpretation could be richer if it

knows what happened earlier – e.g., if earlier events showed multiple stage changes or a big

amount. By storing recent history (maybe in a vector database for semantic retrieval, or simply in

memory timeline), the system can do a Retrieval-Augmented Generation: retrieving related

events and asking the LLM to consider them in its analysis. This can help, for instance, in telling

if the anomaly is isolated or part of a series.

LLM hosting and choice: The LLM backend might be an external API (like OpenAIʼs service) or a

self-hosted model. Many enterprises consider hosting LLMs on-prem or in a private cloud for

data security. Tools like Hugging Faceʼs Transformers can load models (e.g. a smaller GPT-Neo

or LLaMA model) to run within your environment, avoiding sending sensitive data to third-party

APIs. Whether using an API or local model, libraries like LangChain or LLM orchestration

frameworks can be useful to manage prompts, handle chaining (if you need multiple steps), and

integrate retrieval of knowledge. Itʼs also worth noting Salesforceʼs own direction: Salesforce has

an “Einstein Trust Layer” that masks sensitive fields and allows connecting to external LLMs

safely (Source: salesforce.com), and a unified Models API for LLMs is emerging (Source:

salesforce.com). In our custom dashboard, we must implement our own version of these safety

measures – e.g., redact any PII fields from the prompts we send to the LLM, or use encryption if

possible, to maintain compliance.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 9 of 26

https://www.salesforce.com/plus/experience/tdx_2025/series/developers_at_tdx_2025/episode/episode-s1e4#:~:text=Einstein%20Trust%20Layer%20Deep%20Dive
https://www.salesforce.com/plus/experience/tdx_2025/series/developers_at_tdx_2025/episode/episode-s1e4#:~:text=Enhancing%20Agentforce%20with%20the%20Models,API
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

4. Output to Monitoring Dashboard and Alerts: The results from the processing layer feed into the

user-facing components. There are multiple outputs our system might produce:

A live dashboard UI showing real-time stats (counts of events, charts of activity) and

augmented with AI-generated commentary. For example, the dashboard could show a graph of

“Records Created per Hour” and next to it an AI-written note: “Spike at 2pm due to mass import

of leads.” The LLM can generate these notes continuously or on-demand.

Alerts & Notifications sent to IT personnel. If an anomaly is detected or an important change

occurs, the system can send an alert (via email, Slack, etc.) that includes the AIʼs explanation.

For instance, a Slack message to the admin channel might read: “🚨 Anomaly Detected: 50

Accounts were deleted in the last 5 minutes (normal is ~5). The AI analysis suggests this could

be a bulk deletion – possibly a data load issue or script. Please verify if this was expected.” The

AIʼs wording helps the team quickly grasp the situation, rather than just seeing a raw metric.

Incident Reports and Summaries: After significant events or on a schedule (daily/weekly), the

system can compile a report. Using the LLMʼs narrative ability, it can produce a summary like a

status report: “Weekly Change Report: This week 1200 records were created in Salesforce.

Notably, there was a surge in opportunities on Friday (300 created, 2x the daily average). The AI

didnʼt detect any critical anomalies, but it did flag an unusual pattern of Case closures late

Sunday night which could be investigated. Key changes: ...” We will cover later how the LLM can

be prompted to generate such reports, which read as if a human analyst wrote them.

5. Human Feedback and Iteration (Optional): Since this is an AI-driven system, an important aspect

is continuously improving the AIʼs accuracy. The dashboard could allow admins to give feedback on

the AI-generated summaries or explanations (thumbs up/down or comments), which could be

logged. Over time, this feedback could be used to fine-tune the LLM on company-specific data or to

adjust prompting strategies (this is analogous to Salesforceʼs “Einstein Feedback Panel” concept in

some products (Source: salesforce.com)). While this goes beyond initial implementation, itʼs worth

noting in an enterprise setting: the AI should learn from mistakes (e.g., if it misinterpreted an

anomaly, developers can refine the prompt or provide the correct interpretation to avoid recurrence).

The described workflow shows how CDC events flow from Salesforce into an AI analysis and out to end-

users. The architecture is inherently event-driven and asynchronous, which aligns with best practices

for modern scalable systems (Source: techblog.realtor.com)(Source: techblog.realtor.com). Each

component can scale independently – if the event volume doubles, you might add more Kafka partitions

or more Lambda function concurrency; if the LLM API becomes a bottleneck, you might batch more or

use a scaled model deployment. Importantly, the design should ensure no single point of failure: use

retry queues for failed LLM calls, use the 3-day replay to recover missed events, and monitor the health

of the subscriber connection.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 10 of 26

https://www.salesforce.com/plus/experience/tdx_2025/series/developers_at_tdx_2025/episode/episode-s1e4#:~:text=Einstein%20Trust%20Layer%20Deep%20Dive
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=This%20pipeline%20is%20fully%20asynchronous%2C,tolerant
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=%2A%20Near,loops%2C%20or%20middleware%20to%20manage
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

To ground this in a real scenario: at Londonʼs Calling (a Salesforce community conference), a session on

Salesforce monitoring highlighted moving from reactive troubleshooting to real-time proactive monitoring

by leveraging a unified observability framework (Source: londonscalling.net). Our architecture embodies

that spirit – instead of waiting for an issue to be noticed manually, the system proactively captures all

changes and uses AI to make sense of them in real-time. It creates a kind of “virtual analyst” that is

always watching the stream of events, ready to summarize or raise a flag. In the next sections, we delve

deeper into how exactly we summarize events, detect anomalies, and produce incident reports with the

help of LLMs.

Summarizing Stream Activity with LLMs

One of the core benefits of introducing an LLM into the monitoring pipeline is the ability to summarize

and contextualize a high volume of raw data change events. Instead of a human admin sifting through

thousands of log entries or change notifications, the LLM can provide a concise summary of whatʼs

happening. Here we discuss techniques for summarizing CDC stream activity using LLMs and best

practices to get meaningful output:

1. Rolling Summaries (Time-Windowed): A common approach is to periodically summarize events over

a fixed interval (e.g., every 5 minutes, hourly, daily). For example, the system can accumulate all events

from 9:00 to 9:59 and then prompt the LLM with something like: “Summarize the Salesforce changes

from 9:00-10:00. 10 Accounts created, 5 Accounts deleted, 30 Accounts updated (5 changed industry, 10

changed owner, etc.), 12 Opportunities created totaling $X, 3 Opportunities closed won (total $Y), and so

on.” The LLM would then generate a narrative highlighting the key points: “Between 9-10 AM, Salesforce

saw moderate activity. 10 new accounts were onboarded, while 5 old accounts were removed. Account

ownership changes were the most common update. On the sales front, 12 new opportunities were logged

(worth $250K in pipeline), and 3 deals were won, adding $50K to closed revenue. No unusual spikes in

activity were observed during this period.” This is far more digestible than raw numbers. The LLM can be

instructed to focus on changes that are higher than normal or otherwise noteworthy. By comparing with

historical baselines (which can be provided in the prompt, e.g., “normal rate is X per hour”), the LLM can

even indicate if something is high/low. Using an LLM in this way essentially automates the kind of

summary an analyst might prepare for a status meeting – but in real-time and continuously.

2. Trigger-Based Summaries: Instead of fixed intervals, you might trigger summaries based on certain

conditions. For instance, after a burst of events (say more than 100 events in a minute) you could prompt

the LLM for an immediate summary: “100+ changes occurred in the last minute, summarize them.” Or if a

specific event of interest happens (e.g., a production deployment is done, or end of day), you ask the

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 11 of 26

https://www.londonscalling.net/sessions/from-chaos-to-clarity-a-journey-through-salesforce-debugging-and-monitoring/#:~:text=Discover%20how%20observability%20can%20revolutionise,establishing%20an%20effective%20observability%20framework
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

LLM for a summary of changes since the last checkpoint. This strategy ensures you get summaries when

theyʼre needed, possibly reducing noise. Itʼs useful if your goal is to produce a summary only when

something noteworthy has happened.

3. Summarizing by Category: Salesforce events can be categorized by object, operation, user, etc. An

effective summary might break down activity along these lines. For example, an LLM prompt could be

structured as: “Summarize todayʼs changes, organized by object type. First Accounts, then

Opportunities, then Cases. For each, give the count of creates/updates/deletes and any notable large

changes.” The LLM would then output a structured summary: “Accounts: 50 created, 200 updated, 5

deleted – notable: 3 accounts had their type changed from Prospect to Customer. Opportunities: 20

created (total value $1M), ... Cases: ...”. This is a way to impose some structure on the LLMʼs output.

LLMs are generally good at following format instructions (especially GPT-4 class models), so you can

craft prompts that result in bullet-pointed or sectioned summaries, which may be easier to read on a

dashboard. This technique aligns with typical reporting that stakeholders expect (segmented by business

area).

4. Handling Volume and Length Limits: A practical challenge is that on a very busy system, even one

hour of events could be thousands of entries, which would exceed token limits of LLMs if naively

concatenated. Itʼs not feasible (or cheap) to feed every event verbatim to the LLM. To address this, pre-

processing is essential. The system should distill the raw events into a more compact form before

prompting. This could involve computing aggregate statistics (counts, sums) and selecting a few

representative examples of changes. For instance, rather than sending all 200 account update events,

the system might compute “200 Account updates, of which 50 changed Industry (list top 3 new

industries), 30 changed Region, etc.” and only include that summary in the prompt. Essentially, youʼre

doing some classic data aggregation and then letting the LLM turn those numbers into prose. Another

trick is hierarchical summarization: if the timeframe is very large, break it into chunks (say summarize

each hour with the LLM, then take those hourly summaries and ask the LLM to summarize them into a

daily summary). This two-tier approach ensures no single prompt overloads the context window.

5. Prompt Engineering for Summaries: The way you ask the LLM to summarize can greatly influence

the output. Itʼs important to specify the level of detail and the style. For a professional dashboard, youʼd

want a factual, concise style (perhaps instruct the LLM: “Use a neutral tone, and include relevant

numbers in your summary”). Including context like the current date/time or whether the summary is for

internal IT vs business leadership can alter the language (for business stakeholders you might simplify

technical terms). You may also provide the LLM with some persistent instructions (system prompt) such

as: “You are an assistant generating IT monitoring summaries. Be concise and highlight anomalies or

trends, but do not assume facts not provided. Use bullet points if listing multiple items.” These help

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 12 of 26

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

ensure consistency and prevent the LLM from hallucinating or adding irrelevant info. Additionally, testing

and iteration are needed – one might find the LLM misses a particular important detail, so you adjust the

prompt to explicitly ask for it (e.g., “also note if any high-value opportunities closed”).

In essence, summarization with LLMs turns raw telemetry into a story of what happened. Traditional BI

dashboards can show charts, but an LLM can connect the dots in sentence form. Researchers have noted

that LLMs perform well in event log analysis tasks by significantly reducing the manual effort and error-

prone nature of combing through logs (Source: arxiv.org)(Source: arxiv.org). Our use case is analogous:

CDC events are like a log of data changes, and the LLM can analyze them similarly to how it would

analyze any event log. The result is a human-friendly overview available on demand.

For example, after a dayʼs operations, an admin could click “Generate Daily Summary” on the dashboard,

and the LLM might output: “Today, 3240 records were changed in Salesforce. The Sales team was active,

with 50 new Opportunities (worth $5.2M) and 47 Opps closed as Won (bringing in $1.1M). Customer

Service closed 130 Cases, which is 20% higher than usual for a Thursday. No critical anomalies were

detected, though there was a brief surge of Account edits around 3 PM due to a data cleanup. Overall,

data changes were within expected patterns.” This gives a quick health report of the dayʼs data

operations. Without AI, someone would have to manually interpret various reports to get this insight; the

LLM can do it in seconds once the data is prepared.

Anomaly Detection and LLM-Enhanced Alerts

A major goal of a monitoring dashboard is to catch “unusual” activity – spikes, drops, or out-of-bound

changes that could indicate problems (or significant events). Traditional approaches to anomaly

detection on data streams involve statistical thresholds, but these often generate noise or miss context.

By combining analytics with LLMs, we can create smarter anomaly detection that not only flags

anomalies but also explains them. Letʼs break this down:

Traditional Spike/Outlier Detection: We will still employ standard techniques to identify when

something is anomalous. This could be as simple as standard deviation thresholds or as complex as

machine learning models trained on historical data patterns. For example, the system might monitor the

rate of change events per object per hour and have a dynamic threshold (perhaps using a moving

average with seasonality) to decide an anomaly. Tools like Datadog or Dynatrace provide built-in anomaly

detection for metrics – those could potentially ingest the event counts too (Source:

docs.datadoghq.com). For our pipeline, we might maintain counters like “AccountsDeletedPerHour” and

trigger if that exceeds, say, the 99th percentile of the last 30 days. Similarly, content-based anomalies

might be checked: e.g., if a normally rarely-used field gets changed in many records suddenly, or if an

unusual value (say an abnormally high dollar amount) appears in an Opportunity. These are domain-

specific checks one can code in the monitoring service.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 13 of 26

https://arxiv.org/html/2502.00677v1#:~:text=Event%20log%20analysis%20is%20an,Augmented%20Generation%20%28RAG%29%20and
https://arxiv.org/html/2502.00677v1#:~:text=This%20paper%20provides%20an%20overview,a%20result%2C%20logs%20that%20may
https://docs.datadoghq.com/monitors/types/anomaly/#:~:text=Anomaly%20Monitor%20,into%20account%20trends%2C%20seasonal
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

LLM as Anomaly Detector: Interestingly, large language models themselves can act as anomaly

detectors in a more unstructured way. Because LLMs can understand context and sequences, one can

present an LLM with a sequence of events and ask if anything looks off. For instance, feed the LLM a

simplified log: “At 10:00, 5 accounts deleted; 10:05, 7 accounts deleted; 10:10, 0 deleted; 10:15, 0; 10:20,

0; 10:25, 50 deleted; 10:30, 0...” and ask it to identify anomalies. The LLM would likely point out the “50

deleted at 10:25” as unusual. LLMs have been shown to detect anomalies by learning the expected

context and spotting when something doesnʼt fit (Source: dzone.com)(Source: dzone.com). In research

surveys, LLM-based methods have successfully flagged anomalies in event logs by understanding

sequences that “should not happen” or patterns that differ from training data (Source: arxiv.org)(Source:

arxiv.org). We can leverage this by occasionally giving the LLM a chunk of timeline and asking for

anomalies. However, doing this continuously for every minute might be inefficient. A hybrid approach is

more practical: use lightweight detection to raise a candidate anomaly, then use the LLM to analyze that

situation deeply.

LLM Enhanced Alerting (Explanation & Context): When an anomaly is detected (by any method), the

LLMʼs most valuable role is to explain and add context to it. This addresses the classic problem of “alert

fatigue” (Source: algomox.com)(Source: algomox.com) – where ops teams get bombarded with simplistic

alerts like “Threshold X exceeded” with no guidance. Instead, our system can produce alerts that read

like a quick analysis. Consider the earlier example of a spike in deletions. A traditional system would send:

“Alert: Accounts Deleted = 50 in last 5 min (threshold 10)”. An AI-enhanced system can send: “Alert:

Unusual spike of account deletions detected – 50 accounts deleted in 5 minutes (10x higher than

normal). This spike is significantly above normal levels and could indicate a bulk deletion. Possible causes

might be a data cleanup script or an integration error. The deletions all originated from User John Doe

(Salesforce ID 005...), suggesting it was a user-initiated bulk action (Source: algomox.com). It is

recommended to verify if John Doe intended this change.” The content in italics is generated by the LLM,

incorporating details like who performed the deletions (if we include ChangeEvent header

ChangeEventHeader.initiatingUser data in the prompt) and the potential reasons. Notice it even

suggests a next step (verify with that user). This transforms an alert from a cryptic signal into an action-

guiding notification.

LLMs are capable of such contextual understanding and explanation because they can draw on a broad

knowledge of similar scenarios (provided by their training on IT operations texts, best practices, etc.)

(Source: algomox.com)(Source: algomox.com). An Algomox article on AI in IT Ops describes that LLMs

bring contextual intelligence – they can link seemingly disparate data points and recall relevant history

to determine why an anomaly matters (Source: algomox.com)(Source: algomox.com). In our case, the

LLM might recall that a surge in deletions followed by no inserts is unusual unless itʼs a cleanup, or that if

the user is an integration user, it might be an automated process failure. Traditional systems wouldnʼt

“know” that, but an LLM can infer it or at least communicate the anomaly in a richer way.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 14 of 26

https://dzone.com/articles/realtime-anomaly-detection-using-large-language#:~:text=LLMs%20can%20be%20used%20in,Here%20are%20a%20few%20methods
https://dzone.com/articles/realtime-anomaly-detection-using-large-language#:~:text=an%20LLM%20can%20detect%20abnormal,is%20especially%20convenient%20in%20applications
https://arxiv.org/html/2502.00677v1#:~:text=automated%20techniques%20to%20improve%20the,paper%20aims%20to%20survey%20LLM
https://arxiv.org/html/2502.00677v1#:~:text=LLM,Context
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=fall%20short%20in%20dynamic%20environments%2C,to%20anomaly%20detection%20in%20IT
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=intelligence%20to%20monitoring%20systems%20that,nuanced%20interplay%20between%20infrastructure%20components
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=other%20textual%20data,making%20when%20anomalies
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=natural%20language%2C%20understand%20semantic%20relationships%2C,detection%20in%20IT%20operations%2C%20moving
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=other%20textual%20data,making%20when%20anomalies
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=baseline%20behaviors%20and%20identify%20meaningful,leveraging%20their%20ability%20to%20understand
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=documentation%2C%20and%20communication%20channels,entries%20and%20those%20that%20signal
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Outlier Analysis on Field Values: Beyond volume spikes, LLMs could also help with value outliers.

Imagine an event where an Opportunityʼs amount was changed from $1,000 to $50,000,000. This is a

single-event anomaly (a very large value). A rule-based system might catch anything above a certain

amount as an outlier. But an LLM could add insight: “The opportunity value increased to $50M, which is

exceptionally high – this might be a data entry error (perhaps $5M was intended) or a very large deal. It

exceeds the typical deal size by a huge margin.” The LLM can be prompted with the event details and

perhaps stats about typical values. It will then produce an analysis as if a human expert looked at it. This

kind of reasoning – understanding that $50M is unusually high in a sales context – is what LLMs are quite

good at, since theyʼve read vast amounts of text including financial contexts and know typical scales.

Reducing False Positives: One pain point in monitoring is false positives – alerts that turn out not to be

issues. LLMs could help here by acting as a second filter. When an anomaly is flagged, the system can

ask the LLM essentially “Is this worth alerting? Could there be a benign explanation?” and have it answer.

For instance, if thereʼs a spike of 100 Case closures, but itʼs the end of the quarter push where support

teams intentionally closed many cases, an LLM might recognize that pattern if told “100 cases closed at

11:59PM on last day of quarter”. It might respond “This could be the support teamʼs end-of-quarter wrap-

up, which is expected.” We could then either suppress the alert or tag it as low-severity. While this may

not be 100% reliable, itʼs an interesting use of AI to reduce noise. Over time, if integrated with feedback

(learning which alerts were false alarms), the LLM or a fine-tuned model could get better at this

discrimination (Source: algomox.com)(Source: algomox.com).

Anomaly Dashboard and Investigation: The dashboard can have a section listing recent anomalies with

the AI commentary. Each anomaly event could be clickable to show more details (perhaps the raw events

around it, graphs, etc., alongside the LLMʼs narrative). This augments the investigatorʼs toolkit – they not

only see what metric spiked but also a narrative hypothesis generated by the AI. Itʼs like having a junior

analyst writing notes for you to start the investigation. According to a DZone tutorial on real-time anomaly

detection, LLMs can operate in real time and are suitable for streaming scenarios because they can

process data on the fly and maintain context of whatʼs normal (Source: dzone.com)(Source: dzone.com).

This means our system can potentially handle anomalies on streaming data without significant lag.

In summary, anomaly detection in an AI-enhanced CDC dashboard is a combination of algorithmic

detection and AI interpretation. The algorithms (or simple rules) raise the flag, and the LLM raises the

understanding. This mirrors an ideal ops setup where a monitoring tool and a human analyst work in

tandem – here the LLM takes on a lot of the human analystʼs role. The outcome is faster recognition of

issues and more informative alerts, reducing the time it takes for engineers to grasp and respond to a

situation. As one blog put it, LLMs enable monitoring systems to not just say what is wrong, but why it

matters(Source: algomox.com)(Source: algomox.com), which dramatically cuts down Mean-Time-To-

Resolution (MTTR) by avoiding wasted time on trivial or cryptic alerts.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 15 of 26

https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=avoid%20becoming%20obsolete%20as%20environments,particularly%20unsuitable%20for%20detecting%20novel
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=to%20alert%20fatigue%20among%20IT,This
https://dzone.com/articles/realtime-anomaly-detection-using-large-language#:~:text=detection%20without%20labeled%20data,monitoring%20data%20as%20it%20flows
https://dzone.com/articles/realtime-anomaly-detection-using-large-language#:~:text=%2A%20Time,monitoring%20data%20as%20it%20flows
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=intelligence%20to%20monitoring%20systems%20that,nuanced%20interplay%20between%20infrastructure%20components
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=other%20textual%20data,making%20when%20anomalies
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Automated Incident Reports with LLMs

When things do go wrong (or even when they go right and you want to summarize), generating reports

and documentation is the next step. This is another area where the LLM shines – producing human-

readable incident reports or summaries from raw event data and incident details. Traditionally, after an

incident (say a data outage or a bug that caused bad data), someone has to write a report describing

what happened, what was impacted, and how it was resolved. With the data the monitoring system has

and the narrative ability of LLMs, much of this report can be drafted automatically.

Incident Timeline Synthesis: Our monitoring system will have records of anomalies, alerts, and perhaps

steps taken (if integrated with incident response systems). An LLM can be tasked with synthesizing these

into a coherent timeline. For example: “At 14:05 UTC, the system detected an unusually high number of

Account record deletions (50 in 5 minutes) (Source: algomox.com). The AI assistant immediately alerted

the on-call team with a hypothesis of a bulk deletion. By 14:15, the team confirmed an integration job

malfunction was deleting records and halted the job. From 14:20 to 15:00, recovery scripts were run to

restore the deleted Accounts. By 15:30, all records were restored and the incident was resolved. Root

cause was identified as a misconfigured ETL script.” This kind of narrative is essentially an incident post-

mortem summary. The AI can generate it by being given bullet points of key events (detection, actions

taken, resolution). Many incident management tools (PagerDuty, etc.) allow adding notes – if those can

be pulled, they can be fed to the LLM. If not, even just the monitoring data (what was detected when,

when metric returned to normal) can serve as input.

Human-Readable Language: LLMs are very good at adjusting language to the audience. We can

instruct the LLM to produce different report styles for different stakeholders. A detailed technical incident

report for engineering might include specific metrics, Salesforce record IDs, etc., whereas an executive

summary would focus on business impact (“X records were affected, downtime was Y, customer impact

was minimal/high”). By crafting the prompt or using different templates, we can automatically get both

versions. For instance, “Draft a management-facing summary of the incident described above in under

100 words” could yield a short paragraph for an email to leadership. This saves engineering managers a

lot of time. Moreover, consistency is ensured – the AI can use a standard format each time (we can

include a format guide in the prompt, like headings: “What happened, Impact, Resolution, Next

steps”).

Integrating Data Points: During incidents, various data might be gathered – logs, query results, etc. An

LLM can help compile and interpret those as well. Suppose during a data incident you run a SOQL query

to list the affected records; you could feed the results to the LLM and ask it to summarize what kind of

records they were (e.g., “100 Accounts mostly in EMEA region were deleted”). If an error log message

was captured from an integration, the LLM could even include an explanation of that error message in the

report. Essentially, it can weave together disparate pieces of information (which humans normally have to

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 16 of 26

https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=other%20textual%20data,making%20when%20anomalies
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

copy-paste and interpret manually). This aligns with what the Algomox blog noted: LLMs can correlate

information across disparate sources – logs, documentation, etc. – to provide a cohesive analysis

(Source: algomox.com)(Source: algomox.com).

Continuous Improvement and Knowledge Base: Every incident report the LLM generates can be

stored as part of a knowledge base. Future prompts to the LLM could retrieve similar past incidents for

comparison. For example, if a similar anomaly happens again, the system might retrieve the last incidentʼs

summary and include it in the prompt: “Compare with Incident #123 on Oct 5th (where a similar spike

happened due to X)”. The LLM might then say in the new alert, “This pattern resembles the incident on

Oct 5th where an ETL job misbehaved (Source: algomox.com).” This kind of insight is usually only

available to seasoned engineers who remember past incidents; an AI can recall any documented incident

if given access. Over time, the AI essentially becomes an encyclopedia of system behavior, which can be

queried at will.

Narrative for Compliance and Audits: In regulated industries, having a clear record of data changes and

incidents is important. The LLM-generated reports can assist in compliance by ensuring that every

significant data change (especially if related to sensitive data) is documented in plain language. For

example, if a GDPR-related field (like a contactʼs personal data) was changed en masse, an automated

report can be generated explaining what was changed and confirming notifications were sent if needed.

These can feed into audit trails.

One thing to be careful of is factual accuracy – the LLM should stick to the facts provided and not

hallucinate. This is why our design includes giving the LLM structured inputs (counts, lists of events,

confirmed causes) rather than asking it to magically know things. By grounding the LLM with real data

from the system, we ensure the reports are accurate. Any speculative analysis the LLM provides (like

possible causes) can be marked as such or verified by a human.

The net effect is a dramatic reduction in the toil of writing documentation. As soon as an incident is

resolved, an engineer can press a button to generate the incident report, review it, make any minor

corrections, and publish it. What might have taken hours to write and edit can be done in minutes.

Moreover, even routine summaries (daily/weekly reports) keep everyone informed without someone

manually collating data. This encourages a culture of observability and transparency because the effort

to produce reports is no longer a barrier.

Proactive Monitoring in the Spirit of Londonʼs Calling

The combination of real-time CDC data and AI-driven analysis embodies a proactive monitoring

approach. Instead of waiting for a problem (e.g., data discrepancy or user complaint) to surface, the

system actively watches for signs of trouble and trends of interest. This philosophy was highlighted in

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 17 of 26

https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=analyzing%20the%20linguistic%20patterns%2C%20technical,anomaly%20categorization%2C%20moving%20beyond%20binary
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=other%20textual%20data,making%20when%20anomalies
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=business,of%20documentation%2C%20incident%20postmortems%2C%20and
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Salesforce community events like Londonʼs Calling, where experts discussed moving “from reactive

troubleshooting to real-time monitoring” by investing in observability tools (Source: londonscalling.net)

(Source: londonscalling.net). Our AI-enhanced dashboard is the realization of that idea – it continuously

observes Salesforce changes and surfaces insights without being asked.

A few reflections on this approach in the enterprise context:

Unified view for Admins and DevOps: Often, Salesforce admins look at tools like Change Data

Capture or Event Monitoring logs, while developers look at integration logs, etc. A unified AI

dashboard can bridge those gaps, as suggested in the Londonʼs Calling session on observability

where collaboration between admins and developers was key (Source: londonscalling.net). Here,

both groups get the same alerts and summaries, written in clear language, breaking down silos of

information. It encourages collaboration – e.g., an admin sees an anomaly alert explained and can

quickly involve a developer if itʼs an integration issue, since the context is already attached.

Faster incident response and prevention: Proactive monitoring means catching issues before they

become bigger problems. If an AI alert from CDC events notifies that “Account data is being deleted

abnormally,” the team can intervene before too much is lost. This was the kind of real-time reaction

that older batch monitoring couldnʼt achieve. As Londonʼs Calling discussions implied, having the

right tools transforms chaos into clarity – instead of fragmented error tracking, you get a “unified,

proactive system” (Source: londonscalling.net). AI further amplifies this by reducing noise and

pointing directly to likely causes.

Continuous improvement: A proactive AI system can also learn and adapt. Over time it can reduce

false alarms (learning whatʼs “normal” even if initially flagged) and better recognize patterns. This

mirrors how a monitoring culture matures – through feedback and tuning. The AI can encode those

learnings in its model/prompt updates. Itʼs like having a team member who gets more experienced

every day on the job, never forgets a lesson, and is always on duty at 3 AM to watch the system.

Empowering human experts: Far from replacing the human ops or admin, this AI dashboard

empowers them. It handles the grunt work of watching and summarizing, freeing humans to do

deeper analysis and remediation. In the spirit of discussions at Salesforce events, the idea is to let

people focus on high-value tasks and strategy, while automation (now AI-enhanced) handles routine

monitoring. This increases overall system reliability because issues are caught early and handled

systematically, rather than ad hoc.

Mirroring business activity: Proactive monitoring of data changes not only prevents problems, but

it can also provide business insights. Seeing an unusual spike in, say, new leads could be an anomaly

or it could be the result of a successful campaign. The AI can flag it, and business teams might

actually be happy to see it. Thus, the monitoring dashboard doubles as a pulse check on business

operations. This is something that was traditionally outside the scope of IT monitoring but becomes

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 18 of 26

https://www.londonscalling.net/sessions/from-chaos-to-clarity-a-journey-through-salesforce-debugging-and-monitoring/#:~:text=monitoring.%20We%E2%80%99ll%20share%20how%20admin,and%20strategies%20for%20improving%20collaboration
https://www.londonscalling.net/sessions/from-chaos-to-clarity-a-journey-through-salesforce-debugging-and-monitoring/#:~:text=error%20tracking%20into%20a%20unified%2C,establishing%20an%20effective%20observability%20framework
https://www.londonscalling.net/sessions/from-chaos-to-clarity-a-journey-through-salesforce-debugging-and-monitoring/#:~:text=Discover%20how%20observability%20can%20revolutionise,establishing%20an%20effective%20observability%20framework
https://www.londonscalling.net/sessions/from-chaos-to-clarity-a-journey-through-salesforce-debugging-and-monitoring/#:~:text=Discover%20how%20observability%20can%20revolutionise,establishing%20an%20effective%20observability%20framework
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

possible when you treat data changes as important events. It resonates with the proactive mindset:

youʼre not just reacting to failures, youʼre observing everything, including positive surges, and

making sense of it.

In summary, the AI-enhanced CDC monitoring dashboard exemplifies a modern, proactive approach to

systems management: always on, data-driven, and augmented with intelligent analysis. It aligns with the

direction advocated by thought leaders in the Salesforce community – embracing real-time data and AI to

move from fighting fires to actively preventing them and gleaning insights continuously.

Use Cases and Real-World Scenarios

Such an AI-driven monitoring dashboard can be applied in various enterprise scenarios. Here are a few

concrete use cases demonstrating its value:

Data Integration Monitoring: Many organizations use Salesforce as part of a larger ecosystem,

syncing data to data warehouses, ERP systems, etc. CDC is often used to feed integration pipelines

(for example, sending Salesforce changes to an Azure or Snowflake data warehouse in real-time).

The AI dashboard can monitor this flow. Use case: A financial company syncs Salesforce

opportunities to a finance system. The dashboard tracks every change; if the sync lags or fails (e.g.,

no events received for a while, or an anomaly in data changes), the AI alerts the integration team. It

might say, “No Opportunity updates for 30 minutes, which is unusual during business hours – the

integration may be stalled.” This proactive notice allows quick investigation. Without it, the team

might only notice hours later when reports are wrong. The dashboard essentially acts as a guardian

of data consistency across systems.

Bulk Data Operations & Audits: Enterprises periodically do bulk operations – like data migrations,

mass updates (e.g., updating all prices by 5%), or large deletions. Tracking these via CDC with AI

oversight is extremely useful. For instance, an admin initiates a mass update of 10,000 contacts via

Data Loader. The CDC stream will fire like crazy. The AI dashboard can provide a live commentary:

“Mass update in progress: 10k Contact records being updated, fields: Email opt-out and Last

Contacted date mostly. No anomalies detected – changes match the admin userʼs bulk operation.”

After completion, it might summarize success or any records that failed to update (if captured via

events). Additionally, it logs this as an audit trail automatically. If later someone questions “why did all

these contacts change?”, the dashboard has a summary on that date explaining it. In regulated

environments, having such narratives for bulk changes is gold for compliance.

Security and Compliance Monitoring: CDC can emit change events for changes to user records,

permission changes, etc., not just business data. You could enable CDC on the User object or Profile

(if supported) to catch when someone changes a userʼs role or permission set. The AI could then

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 19 of 26

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

alert on potentially risky changes: e.g., “Admin privileges granted to user X” or “20 users were

deactivated en masse at 2 AM by user Y – this is unusual”. This crosses into security monitoring.

While Salesforce has Event Monitoring for things like login attempts, CDC focuses on data and

metadata changes. An AI overlay can interpret, for example, if a set of high-profile accounts had their

ownership changed unexpectedly (possible insider threat or mistake). It might not be an outright

security incident, but something to review. Essentially, it provides an additional layer of governance

on top of data changes.

Sales and Service Operations Insights: Beyond IT concerns, the same platform can provide

business operations insights. Sales managers could glance at the dashboard to see not just numbers

but summaries: “AI Summary: Pipeline grew by $2M today, mostly from 3 large opportunities in APAC

region. 5 opportunities pushed to next quarter (deal slipped).” This is derived from CDC events

(Opportunity Stage changes, Amount changes) but presented in business terms. Similarly for

service: “Todayʼs case closures spiked due to a bulk closure of 50 old cases by the support team,

clearing backlog.” These insights help connect the IT monitoring with business outcomes. It

demonstrates the versatility of combining CDC (which is essentially business data changes) with AI.

In real-world enterprise use, this could reduce the need for separate BI reports for operational

metrics – the monitoring tool itself doubles as an operational intelligence tool.

Release Impact Monitoring: When a new Salesforce deployment (changeset or CI/CD release) is

rolled out, one worry is unintended impacts on data. The AI dashboard can be on high alert during

and after releases. Use case: A new trigger is deployed that accidentally modifies records incorrectly.

Immediately, CDC events start pouring in for an object that wasnʼt supposed to change. The AI flags:

“After deployment at 10:00, 500 Account records were updated in 10 minutes (fields: X, Y all set to

null). This looks like a potential bug introduced by the latest release.” This early catch can lead to a

quick rollback. Without CDC monitoring, such data corruption might not be noticed until a user

reports it. This use case underscores the observability aspect – itʼs like having a continuous test

running in production that watches for anything out of the norm after changes.

Platform Load and Usage Trends: Over time, the data collected can also highlight usage trends for

capacity planning. For instance, you might see that every Monday morning thereʼs a spike of lead

creations (maybe due to weekend web signups being processed). The AI can note this pattern and

ensure itʼs recognized as normal (so it doesnʼt alert as anomaly every Monday). But it can also help

capacity planning by quantifying these patterns. If the volume is growing week over week, the team

knows to maybe increase throughput or review Salesforce limits (CDC has limits on events per

hour/day depending on license). This is more of a retrospective analysis, but the dashboard can

generate weekly trend reports for management: “Trend: Weʼve seen a 15% increase in weekly record

change volume this quarter. If the trend continues, we may hit org limits or need to optimize event

processing.” It provides data-driven foresight, which is crucial in enterprise planning.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 20 of 26

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

These scenarios show that an AI-enhanced CDC dashboard isnʼt just about catching errors – it becomes

a multi-faceted tool for observability, business intelligence, and system governance. A great real-

world parallel is how Realtor.com implemented event-driven data sync and saw improvements in reliability

and observability (Source: techblog.realtor.com)(Source: techblog.realtor.com). They noted benefits like

decoupling, real-time updates, and better insight into failures (via CloudWatch logs and metrics) (Source:

techblog.realtor.com). Our system would bring those same benefits and add AI-driven intelligence on top.

Another real example: A large enterprise might have a nightly sync that was considered “good enough.”

After switching to CDC with AI monitoring, they discover issues they never saw before (like a particular

field frequently toggling values back and forth, indicating perhaps two systems fighting each other –

something the AI could notice and flag as an anomaly). This leads to a fix that improves data quality.

Thus, the tool not only monitors but also indirectly leads to higher data quality and process

optimization, because it shines light on patterns (good or bad) that were previously hidden in the noise

or only found through laborious manual checks.

Enterprise-Grade Considerations: Scalability, Security,

Observability

Building this AI-enhanced monitoring solution for an enterprise means it must meet stringent

requirements for performance, security, and maintainability. We address some key considerations:

Scalability: As mentioned, Salesforce CDC can generate millions of events per day in a large org

resources.docs.salesforce.com. The system must scale to handle bursts of events. The use of

technologies like Kafka or cloud event buses is one scaling strategy (they can buffer and distribute load).

The LLM processing also needs to scale – if using a cloud API, that means handling rate limits or

multiplexing requests. Techniques like batching events for summarization help reduce load. Itʼs also

possible to dynamically scale the number of AI processing workers (for example, have a serverless

function that can spin up multiple parallel invocations if a backlog builds). One must also consider

throughput vs latency: In peak times, do we allow summaries to lag a bit behind real-time to ensure we

donʼt drop events? Probably yes, design the system to queue and catch up rather than skipping analysis.

Using the replay feature of CDC is a fallback if any events are missed due to overload – the system could

track the last processed event replay ID and if it falls behind, catch up when load normalizes. In terms of

the LLM, if using a large model like GPT-4, it has a cost and speed impact. It might be wise to use a mix

of models: a faster, cheaper model (or distilled model) for quick analyses and the big model only for

complex summaries or incident reports. This hierarchy ensures scalability of cost as well.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 21 of 26

https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=This%20pipeline%20is%20fully%20asynchronous%2C,tolerant
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=%2A%20Near,loops%2C%20or%20middleware%20to%20manage
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=%2A%20Near,loops%2C%20or%20middleware%20to%20manage
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Change%20Data%20Capture%20enables%20secure,secure%20event%20storage%20and%20communication
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Security and Data Privacy: Salesforce data often contains sensitive customer information. Sending raw

events to an LLM (especially a third-party API) raises security questions. A few measures to mitigate this:

First, mask or omit sensitive fields in prompts. Salesforceʼs own guidelines for using LLMs suggest

using data classification tags to mask PII when sending to external services (Source:

help.salesforce.com). We should do similar – e.g., if an Accountʼs field “SSN” changed, the prompt might

say “[SSN field changed]” instead of the actual number. Or better, avoid including raw personal data in

any prompt unless absolutely necessary for the analysis. Second, consider deploying the LLM in a secure

environment. If using OpenAI or others, leverage their enterprise offerings that promise data wonʼt be

used for training and is stored transiently. Or use an on-premise model to keep all data in-house. Third,

secure the integration itself: use TLS for all data in transit (which is standard for these APIs), secure

storage of any logs or outputs from the LLM (since an incident report might itself contain sensitive info).

Also implement access controls on the dashboard – only authorized staff can view the monitoring

dashboard and the AI insights (which might include summaries of sensitive changes). The Einstein Trust

Layer concept is relevant – in Salesforceʼs context, it intercepts LLM calls to mask data (Source:

salesforce.com). We would effectively build our own mini “trust layer” as part of the processing pipeline

for safety.

Compliance: For regulated industries, ensure the solution complies with regulations like GDPR. For

example, if using an external LLM, inform and possibly allow opting out certain data. If a customer asks

for their data to be deleted (GDPR right to be forgotten), one must consider that if their data was used in

some LLM prompt or summary, is that stored? We might choose not to persist raw prompts or outputs

containing personal data beyond a certain time. Or we store only aggregated stats, not individual names.

These design choices help maintain compliance.

Observability of the Monitoring System: Itʼs a bit meta, but we need to monitor the monitor. This

means tracking that the CDC subscriber is running, that events are being processed in a timely manner,

and that the LLM invocations succeed. We should emit metrics like “Events Processed per Minute”, “Lag

(time from event generation to processed)”, “Number of outstanding events in queue”, “LLM API response

time”, etc. Using application performance monitoring (APM) tools or at least CloudWatch/Stackdriver logs

for the processing pipeline is important. For example, if the LLM service goes down or starts erroring, the

system should alert that the AI analysis is currently unavailable (so admins know they might not get

summaries for a while). Also, include fallback behaviors – e.g., if the LLM fails for a particular event,

perhaps log it and move on (the pipeline shouldnʼt block indefinitely). We can even have a secondary

simpler alert if too many LLM errors occur (“AI analysis failed 10 times in last hour”). Logging each step of

processing with correlation IDs (like Salesforce record Id or event replayId) will help debug issues in the

pipeline. Essentially, treat this AI system with the same rigor as any production system – include health

checks, auto-recovery (maybe the subscriber auto-reconnects using Salesforceʼs replay if connection

drops, etc.). The CDC developer guide provides info on monitoring event delivery usage – e.g., querying

the PlatformEventUsageMetric to see event publish and delivery counts

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 22 of 26

https://help.salesforce.com/s/articleView?id=release-notes.rn_messaging_change_data_capture_section.htm&language=en_US&release=252&type=5#:~:text=Use%20Salesforce%20Data%20Classification%20for,Pilot%29%20%C2%B7%20Track
https://www.salesforce.com/plus/experience/tdx_2025/series/developers_at_tdx_2025/episode/episode-s1e4#:~:text=Einstein%20Trust%20Layer%20Deep%20Dive
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

resources.docs.salesforce.com. One could integrate that to see if weʼre nearing any limits or dropping

events (Salesforce can show if events werenʼt delivered due to subscriber issues). In a way, we have

multiple layers to observe: Salesforceʼs side, the integration middleware, and the AI processing. Each

should have some visibility.

Performance Optimization: Consider using streaming processing to filter or preprocess events before

hitting the LLM, as discussed. In high-volume scenarios, not every event needs AI analysis. We might

bypass trivial changes (like a timestamp field update thatʼs routine) and not send those to the LLM at all.

Or only summarize at an aggregate level. Also optimize prompt construction to be lightweight (no

extraneous text) because tokens cost both time and money. Possibly maintain some prompts as

templates and just fill in numbers.

Failure Modes and Resilience: If the AI outputs nonsense or is wrong (it can happen), how do we handle

it? Ideally a human reviews critical outputs, but for real-time alerts that might not be feasible. One could

implement a simple sanity check on AI output – for example, ensure it at least mentions the key stats. Or

run multiple prompts (like ask the same thing twice with slight variation to see if answers differ wildly –

though that doubles cost). Another failure mode: the LLM might time out or not respond quickly enough

for real-time needs. In such case, we might send an alert without AI explanation rather than wait too long.

Or use a shorter summary model as a backup.

Cost Management: Running LLMs, especially via API, incurs cost per token. At enterprise scale, this

could add up. Itʼs important to monitor usage and possibly place limits. For example, maybe donʼt

summarize every 1 minute if 10 minute granularity is enough, to save costs. Or use smaller models for

frequent tasks and big models only for heavy tasks (like weekly report). The system should allow

configuration of how often and how much data to feed the LLM to balance insight vs expense.

Scalability of the LLM approach (future-proofing): As volume grows, one might consider fine-tuning a

domain-specific model on the company's data to improve its efficiency and reduce reliance on very large

models. There are already approaches to fine-tuning LLMs on log data or using techniques like LoRA to

make a smaller model understand your log/event style. This could be an evolution in an enterprise

scenario: start with OpenAI API for quick value, but if the usage is heavy, invest in a custom model that

runs cheaper at scale.

Conclusion & Enterprise Impact: Emphasizing enterprise-grade practices, our design uses event-

driven patterns for throughput and decoupling, adheres to security best practices by protecting

sensitive data, and implements robust observability so we can trust this system in production.

Adopting this AI-enhanced monitoring can significantly improve an enterpriseʼs ability to maintain data

integrity and system reliability. It not only catches issues faster (reducing downtime or bad data

propagation) but also provides actionable intelligence to continuously improve processes. As Salesforce

pushes more into AI (e.g., Einstein GPT) and event-driven architectures, solutions like this will likely

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 23 of 26

https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Monitor%20Change%20Event%20Publishing%20and,0%20and%20later
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

become standard in enterprise IT toolkits – blending CRM data change monitoring with generative AI to

keep systems and businesses running smoothly with minimal surprise. The forward-looking organizations

are already experimenting with such combinations, and the results – more efficient ops, fewer incidents,

and better communication – speak for themselves.

References:

Salesforce Developers: Change Data Capture documentation

resources.docs.salesforce.comresources.docs.salesforce.com resources.docs.salesforce.com

Salesforce Architects Guide: Event-Driven Architecture & integrations (Source:

architect.salesforce.com)(Source: architect.salesforce.com)

SalesforceBen article on CDC vs Platform Events (Source: salesforceben.com)(Source:

salesforceben.com)

USEReady blog on building real-time pipelines with Salesforce CDC and Kafka (Source:

useready.com)(Source: useready.com)

Realtor.com Tech Blog on event-driven integration with Salesforce (EventBridge) (Source:

techblog.realtor.com)(Source: techblog.realtor.com)

DZone tutorial on Real-Time Anomaly Detection with LLMs (Source: dzone.com)(Source: dzone.com)

Algomox blog on leveraging LLMs for IT operations monitoring (Source: algomox.com)(Source:

algomox.com)

Londonʼs Calling session description on proactive monitoring and observability (Source:

londonscalling.net)

Tags: salesforce cdc, llm, system architecture, data integration, anomaly detection, monitoring, generative ai,

change data capture

About Cirra

About Cirra AI

Cirra AI is a specialist software company dedicated to reinventing Salesforce administration and delivery through

autonomous, domain-specific AI agents. From its headquarters in the heart of Silicon Valley, the team has built the

Cirra Change Agent platform—an intelligent copilot that plans, executes, and documents multi-step Salesforce

configuration tasks from a single plain-language prompt. The product combines a large-language-model

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 24 of 26

https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Receive%20near,IN%20THIS%20SECTION
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Use%20Change%20Data%20Capture%20to,Merged%20Change%20Events
https://resources.docs.salesforce.com/latest/latest/en-us/sfdc/pdf/salesforce_change_data_capture.pdf#:~:text=Change%20Data%20Capture%20enables%20secure,record%20changes%2C%20including%20create%2C%20update
https://architect.salesforce.com/decision-guides/event-driven#:~:text=,PushTopic%20and%20Generic%20Events%20within
https://architect.salesforce.com/decision-guides/event-driven#:~:text=Salesforce%20Platform%20Apache%20Kafka%20on,code
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=A%20change%20data%20capture%20,deleted
https://www.salesforceben.com/integration-using-change-data-capture-and-platform-events/#:~:text=Accept%20the%20requested%20permissions%2C%20then,and%20press%20the%20Subscribe%20button
https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc#:~:text=Change%20Data%20Capture%20in%20Salesforce,to%20know%20about%20such%20changes
https://www.useready.com/blog/building-scalable-real-time-data-pipelines-with-salesforce-cdc#:~:text=act%20on%20their%20data.%20Real,time%20data%20pipeline
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=Step%202%3A%20Use%20Salesforce%20Event,Bus%20Relay
https://techblog.realtor.com/real-time-account-updates-with-salesforce-platform-events-and-aws/#:~:text=%2A%20Near,loops%2C%20or%20middleware%20to%20manage
https://dzone.com/articles/realtime-anomaly-detection-using-large-language#:~:text=,it%20may%20require%20labeled%20data
https://dzone.com/articles/realtime-anomaly-detection-using-large-language#:~:text=%2A%20Time,monitoring%20data%20as%20it%20flows
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=baseline%20behaviors%20and%20identify%20meaningful,leveraging%20their%20ability%20to%20understand
https://www.algomox.com/resources/blog/anomaly_detection_llm_it_operations/#:~:text=other%20textual%20data,making%20when%20anomalies
https://www.londonscalling.net/sessions/from-chaos-to-clarity-a-journey-through-salesforce-debugging-and-monitoring/#:~:text=Discover%20how%20observability%20can%20revolutionise,establishing%20an%20effective%20observability%20framework
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

reasoning core with deep Salesforce-metadata intelligence, giving revenue-operations and consulting teams the

ability to implement high-impact changes in minutes instead of days while maintaining full governance and audit

trails.

Cirra AIʼs mission is to “let humans focus on design and strategy while software handles the clicks.” To

achieve that, the company develops a family of agentic services that slot into every phase of the change-

management lifecycle:

Requirements capture & solution design – a conversational assistant that translates business

requirements into technically valid design blueprints.

Automated configuration & deployment – the Change Agent executes the blueprint across sandboxes

and production, generating test data and rollback plans along the way.

Continuous compliance & optimisation – built-in scanners surface unused fields, mis-configured sharing

models, and technical-debt hot-spots, with one-click remediation suggestions.

Partner enablement programme – a lightweight SDK and revenue-share model that lets Salesforce SIs

embed Cirra agents inside their own delivery toolchains.

This agent-driven approach addresses three chronic pain points in the Salesforce ecosystem: (1) the high cost of

manual administration, (2) the backlog created by scarce expert capacity, and (3) the operational risk of

unscripted, undocumented changes. Early adopter studies show time-on-task reductions of 70-90 percent for

routine configuration work and a measurable drop in post-deployment defects.

Leadership

Cirra AI was co-founded in 2024 by Jelle van Geuns, a Dutch-born engineer, serial entrepreneur, and 10-year

Salesforce-ecosystem veteran. Before Cirra, Jelle bootstrapped Decisions on Demand, an AppExchange ISV

whose rules-based lead-routing engine is used by multiple Fortune 500 companies. Under his stewardship the

firm reached seven-figure ARR without external funding, demonstrating a knack for pairing deep technical

innovation with pragmatic go-to-market execution.

Jelle began his career at ILOG (later IBM), where he managed global solution-delivery teams and honed his

expertise in enterprise optimisation and AI-driven decisioning. He holds an M.Sc. in Computer Science from Delft

University of Technology and has lectured widely on low-code automation, AI safety, and DevOps for SaaS

platforms. A frequent podcast guest and conference speaker, he is recognised for advocating “human-in-the-loop

autonomy”—the principle that AI should accelerate experts, not replace them.

Why Cirra AI matters

Deep vertical focus – Unlike horizontal GPT plug-ins, Cirraʼs models are fine-tuned on billions of

anonymised metadata relationships and declarative patterns unique to Salesforce. The result is context-

aware guidance that respects org-specific constraints, naming conventions, and compliance rules out-of-

the-box.

Enterprise-grade architecture – The platform is built on a zero-trust design, with isolated execution

sandboxes, encrypted transient memory, and SOC 2-compliant audit logging—a critical requirement for

regulated industries adopting generative AI.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 25 of 26

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

Partner-centric ecosystem – Consulting firms leverage Cirra to scale senior architect expertise across

junior delivery teams, unlocking new fixed-fee service lines without increasing headcount.

Road-map acceleration – By eliminating up to 80 percent of clickwork, customers can redirect scarce

admin capacity toward strategic initiatives such as Revenue Cloud migrations, CPQ refactors, or data-model

rationalisation.

Future outlook

Cirra AI continues to expand its agent portfolio with domain packs for Industries Cloud, Flow Orchestration, and

MuleSoft automation, while an open API (beta) will let ISVs invoke the same reasoning engine inside custom UX

extensions. Strategic partnerships with leading SIs, tooling vendors, and academic AI-safety labs position the

company to become the de-facto orchestration layer for safe, large-scale change management across the

Salesforce universe. By combining rigorous engineering, relentlessly customer-centric design, and a clear ethical

stance on AI governance, Cirra AI is charting a pragmatic path toward an autonomous yet accountable future for

enterprise SaaS operations.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. Cirra shall not be liable

for any damages arising from the use of this document. This content may include material generated with assistance from

artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical information independently.

All product names, trademarks, and registered trademarks mentioned are property of their respective owners and are used

for identification purposes only. Use of these names does not imply endorsement. This document does not constitute

professional or legal advice. For specific guidance related to your needs, please consult qualified professionals.

Architecting an LLM-Based Salesforce CDC Monitoring System

Page 26 of 26

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/llm-salesforce-cdc-monitoring-system

