
Salesforce DX Scratch Org Automation Using the
MCP Server
Published August 17, 2025 55 min read

Lightning‑Fast Scratch‑Org Automation with the
Salesforce DX MCP Server
Imagine being able to create and configure a Salesforce environment by simply telling an AI assistant

what you need, in plain English. That vision is now a reality with Salesforce DX and the new MCP server

integration. Salesforce DX (Developer Experience) introduced scratch orgs – ephemeral, fully

configurable orgs for development and testing (Source: developer.salesforce.com) – to streamline the

development lifecycle. Now, the Salesforce DX MCP Server (where MCP stands for Model Context

Protocol, not to be confused with the Metadata Coverage report) brings large language models (LLMs)

into the mix. The result is a powerful combination that lets developers and DevOps engineers spin up,

manage, and tear down scratch orgs with natural language commands, dramatically accelerating

workflows.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 1 of 28

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=The%20scratch%20org%20is%20a,personal%20data%20to%20scratch%20orgs
https://cirra.ai/articles/model-context-protocol-ai-tool-integration
https://cirra.ai/articles/model-context-protocol-ai-tool-integration
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

In this comprehensive tutorial, we’ll explore how MCP-driven automation works and provide step-by-step

guidance for setting up lightning-fast scratch-org automation. We’ll cover an overview of Salesforce

DX and the MCP server’s purpose, how LLMs integrate into Salesforce DevOps, and a detailed guide to

installing and using the DX MCP server. Along the way, we’ll dive into implementation details with code

samples, show how to enforce org allow-list security, discuss performance benchmarks, and address

security implications (error handling, audit logging, RBAC). We’ll also highlight real-world use cases in

CI/CD, automated testing, and developer onboarding. Let’s jump in!

Salesforce DX and the MCP Server: A Powerful Combination

Salesforce DX is a modern developer experience that emphasizes source-driven development, modular

packaging, and automation. A core element of DX is the scratch org – a disposable Salesforce org that

developers can quickly create, configure with specific features, use for development or continuous

integration, then delete when done (Source: salesforceben.com)(Source: developer.salesforce.com).

Scratch orgs empower agile development by allowing you to “start from scratch” for each new feature or

test, ensuring a clean, isolated environment for every task. They can emulate different Salesforce editions

and features via a definition file, and they drive productivity by enabling quick spin-up for new projects,

feature branches, or test runs (Source: developer.salesforce.com). In practice, a CI/CD pipeline or

developer script will create a scratch org, deploy the necessary metadata, run tests, and then delete the

org, as part of an automated cycle (Source: salesforceben.com).

While Salesforce DX provides the CLI (sf command) and other tools to manage scratch orgs, the MCP

server brings a new layer of automation by acting as a bridge between AI agents/LLMs and Salesforce.

The Salesforce DX MCP Server is an open-source implementation of the Model Context Protocol that

allows large language models to directly interact with Salesforce orgs and DX workflows in a structured,

secure way (Source: github.com)(Source: github.com). Essentially, the MCP server exposes a set of tools

(operations like creating an org, deploying metadata, running tests, etc.) that an AI agent can invoke to

achieve high-level goals. This means instead of a developer manually typing CLI commands or clicking

through setup steps, they can simply instruct an AI (in natural language) to perform the task – for

example, “create a new scratch org and deploy my code to it” – and the MCP server will execute those

steps under the hood.

Architecture of the Salesforce DX MCP Server. The MCP server sits between AI-driven agents and

Salesforce DX. It connects to orgs you’ve authorized via the Salesforce CLI and uses Salesforce’s DX

libraries (not just shelling out to the CLI) to perform actions securely. This layered design focuses on

delivering developer outcomes (e.g. “deploy my code”) rather than one-to-one CLI command execution

Salesforce DX Scratch Org Automation Using the MCP Server

Page 2 of 28

https://cirra.ai/articles/ai-apex-test-data-generation
https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=Scratch%20orgs%20are%20typically%20used,and%20deleted%29%20quickly
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=The%20scratch%20org%20is%20a,personal%20data%20to%20scratch%20orgs
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=Scratch%20orgs%20drive%20developer%20productivity,org%20when%20you%20want%20to
https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=Scratch%20orgs%20are%20typically%20used,and%20deleted%29%20quickly
https://cirra.ai/articles/salesforce-mcp-servers-technical-guide
https://cirra.ai/articles/salesforce-mcp-servers-technical-guide
https://cirra.ai/articles/salesforce-agentforce-ai-agents
https://github.com/salesforcecli/mcp#:~:text=Overview%20of%20the%20Salesforce%20DX,Developer%20Preview
https://github.com/salesforcecli/mcp#:~:text=The%20Salesforce%20DX%20MCP%20Server,and%20operate%20Salesforce%20resources%20securely
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

(Source: developer.salesforce.com)(Source: developer.salesforce.com). The MCP server uses the same

trusted DX libraries as the CLI, ensuring it understands your project configuration and org contexts.

(Source: developer.salesforce.com)(Source: developer.salesforce.com)

What is the MCP server’s purpose? In short, it gives AI applications a USB-like standardized interface

to Salesforce DX. The Model Context Protocol was originally created by Anthropic to standardize how

tools/services are exposed to AI models (Source: developer.salesforce.com). Salesforce has adopted

MCP to provide a secure, structured way for AI assistants to perform Salesforce tasks. The Salesforce DX

MCP Server (released in mid-2025) allows AI-powered development tools to create orgs, deploy code,

run tests, query data, and more using natural language instructions (Source: developer.salesforce.com)

(Source: developer.salesforce.com). It’s essentially a local MCP server tailored for Salesforce developers:

you run it on your development machine (or CI environment), and it interfaces with your authenticated

orgs and project files to carry out commands. By using the MCP server, Salesforce ensures that LLMs

don’t directly execute raw CLI commands (which could be error-prone or insecure); instead, the LLM

communicates with the MCP server’s API, and the server invokes internal DX libraries to get the job done

(Source: github.com)(Source: github.com). This design has several advantages which we’ll explore

(security, reliability, speed).

LLM Integration in Salesforce DevOps: Natural Language

Workflows

The integration of large language models into DevOps is transforming how developers work with tools. In

the Salesforce ecosystem, AI assistants (like Salesforce’s own Agentforce, or third-party AI coding tools)

can act as “agentic” development partners (Source: developer.salesforce.com). These agents can read

documentation, write code, and even execute commands. However, before MCP, an LLM-driven agent

often struggled when interacting with Salesforce CLI: the model might hallucinate incorrect commands or

outdated flags (since CLI syntax could change after the model’s training) (Source:

developer.salesforce.com). This led to a lot of guesswork and trial-and-error, slowing down the process.

In other words, early attempts to have AI automate Salesforce tasks were fragile and inefficient – the AI

might eventually get it right, but only after several errors (Source: developer.salesforce.com).

This is where the MCP standard changes the game. MCP provides a structured, tool-based interface

that the AI can rely on, much like a developer relies on an API rather than scraping a UI. Instead of having

to know the exact CLI syntax, the LLM simply requests a high-level action (like “deploy metadata to org

X”) and the MCP server handles the implementation. You can think of MCP as a universal adapter for AI:

“MCP is like a USB-C port for AI applications, providing a standardized way</current_article_content> to

connect AI models to data sources, services, and tools.”(Source: developer.salesforce.com) In practice,

this meansan AI DevOps agent doesn’t need up-to-date training on every CLI command; it just needs to

Salesforce DX Scratch Org Automation Using the MCP Server

Page 3 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Because%20it%E2%80%99s%20a%20local%20MCP,server%2C%20it
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Note%3A%20The%20Salesforce%20DX%20MCP,engineer%20CLI%20syntax%20or%20workflows
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Because%20it%E2%80%99s%20a%20local%20MCP,server%2C%20it
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Note%3A%20The%20Salesforce%20DX%20MCP,engineer%20CLI%20syntax%20or%20workflows
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Enter%20MCP%2C%20a%20standard%20way,to%20understand%20and%20use%20resources
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Have%20you%20ever%20wished%20you,what%20MCP%20can%20help%20with
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=This%20open,code%20developers%20a%20way%20to
https://cirra.ai/articles/deploy-typescript-mcp-server-heroku
https://github.com/salesforcecli/mcp#:~:text=,tool%20architecture%20for%20easy%20extensibility
https://github.com/salesforcecli/mcp
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Agents%20are%20leveling%20up%2C%20and,tooling%20needs%20to%20keep%20pace
https://cirra.ai/articles/natural-language-interface-salesforce-cli
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=run%20into%20a%20wall
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,explicit%20structure%20to%20be%20efficient
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=The%20image%20below%20illustrates%20how,protocols%20for%20connecting%20diverse%20components
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

understand the MCP tools that are available. The Salesforce DX MCP server advertises a set of tool

endpoints (for example: sf-list-all-orgs , sf-deploy-metadata , sf-query-org , sf-test-apex ,

etc.) (Source: developer.salesforce.com), and the agent can choose the appropriate tool based on the

user’s request. The server will then execute that tool and return the results (or errors) back to the AI for

further reasoning.

Crucially, the MCP server focuses on outcomes rather than specific commands. It is not merely a thin

wrapper that maps each natural language request to a single CLI command. Instead, it may orchestrate

multiple internal steps to fulfill a request. As the Salesforce DX team notes: “The Salesforce DX MCP

server is not just a wrapper around CLI commands. Its tools deliver developer outcomes – not one-to-

one CLI command mappings. This lets agents focus on what developers actually want done instead of

struggling to reverse-engineer CLI syntax.”(Source: developer.salesforce.com) For example, if you ask

the AI to “set up a scratch org for my feature branch and load sample data”, the agent (through MCP)

could create the scratch org, deploy the source, and import data in one intelligent sequence. The

developer just described the goal, and the AI handled the procedure.

To the developer or DevOps engineer, this feels like having a smart assistant on call. Have you ever

wished you could just ask an AI, “deploy my code to a new test org,” without typing out all the

commands? That’s exactly what this integration enables (Source: developer.salesforce.com). You type a

plain-English instruction in a chat or command interface, and within seconds the necessary Salesforce

DX actions are executed. This can significantly speed up repetitive tasks and lower the barrier for

complex operations (you don’t need to memorize CLI arguments or click through multiple steps). In

effect, the LLM becomes a natural language interface for Salesforce DX, and the MCP server is the

translator that turns that request into API calls and DX actions.

Natural language DevOps in action – using the Salesforce DX MCP Server through an AI-driven IDE. In

this example, a developer has typed an instruction (in the Cline IDE’s agent chat) to deploy Apex code,

and the MCP server has identified the correct deployment action. The AI assistant presents the planned

action for confirmation (“Continue”), ensuring the user stays in control (Source: github.com). This kind of

workflow allows a developer to simply describe a task (“deploy my code” or “list my active scratch orgs”)

and let the AI agent handle the DX steps behind the scenes.(Source: github.com)(Source: github.com)

By integrating LLMs into the Salesforce DevOps toolchain, teams can achieve new levels of automation

and speed. For instance, an AI agent could handle environment setup or data seeding tasks during a

deployment, or assist a developer by quickly retrieving org information on request. And because the MCP

server uses secure, approved tool calls, the organization can impose governance on what the AI is

allowed to do (more on security in a later section). In summary, LLM integration via MCP brings

convenience (natural language control), speed (faster execution with fewer mistakes (Source:

developer.salesforce.com)), and consistency (standardized outcomes) to Salesforce development

workflows.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 4 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Tools
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Image%3A%20Diagram%20showing%20a%20layered,architecture
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Have%20you%20ever%20wished%20you,what%20MCP%20can%20help%20with
https://github.com/salesforcecli/mcp#:~:text=5,the%20results%20of%20your%20request
https://github.com/salesforcecli/mcp#:~:text=5,the%20results%20of%20your%20request
https://github.com/salesforcecli/mcp#:~:text=Try%20out%20these%20examples%3A
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,prone
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Step-by-Step Guide: Installing MCP and Automating Scratch

Orgs

Now let’s dive into a step-by-step tutorial on setting up the Salesforce DX MCP Server and using it to

automate scratch org operations via LLM commands. We’ll go through installing and configuring the MCP

server, integrating it with an AI/LLM client, and then using natural language to create, configure, and

delete scratch orgs. Along the way we will provide code examples (CLI commands, config files) to

illustrate the implementation.

1. Install and Configure the Salesforce DX MCP Server

Before you begin, make sure you have a Salesforce DX development environment ready. Install the

Salesforce CLI (the sf CLI) and ensure you have Node.js available (Source: developer.salesforce.com)

(the Salesforce CLI installer includes Node, or you can install Node.js LTS separately). You’ll also want to

have VS Code with the Salesforce extensions as a convenient client environment (Source:

developer.salesforce.com) (though other MCP clients are possible). Finally, ensure you’ve authenticated

to at least one Salesforce org using the CLI – for scratch orgs, you should authenticate to a Dev Hub org

(which is required to create scratch orgs) and have any existing scratch org aliases you want to use

already created (Source: github.com)(Source: github.com). (If you don’t have a Dev Hub, you can enable

Dev Hub in a Developer Edition org or Trailhead Playground and use that.)

The Salesforce DX MCP Server itself is distributed as an NPM package. It’s open source and currently in

Developer Preview on GitHub (Source: developer.salesforce.com)(Source: developer.salesforce.com).

You can install it globally or run it via npx . The simplest way to get started is to run it on demand with

npx, which ensures you have the latest version:

Using npx to run the Salesforce DX MCP Server (Developer Preview) npx -y @salesforce/m

The above will download and execute the MCP server package. (The --help flag will show usage info –

you can omit it in actual use.) However, typically you won’t run the server by manually typing the npx

command each time; instead, you integrate it with an MCP-enabled client such as VS Code. For example,

in VS Code you can define the MCP server in your workspace settings so that it starts up with a single

command.

Create a file named .vscode/mcp.json in the root of your Salesforce DX project (if it’s not already

created by an extension). Add the following JSON configuration to define the Salesforce DX MCP

server:

Salesforce DX Scratch Org Automation Using the MCP Server

Page 5 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=How%20to%20get%20started%20with,MCP
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=How%20to%20get%20started%20with,MCP
https://github.com/salesforcecli/mcp#:~:text=,also%20create%20a%20scratch%20org
https://github.com/salesforcecli/mcp#:~:text=You%20must%20explicitly%20authorize%20the,command%20from%20the%20command%20palette
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=On%20May%2030%2C%202025%2C%20the,an%20open%20source%20GitHub%20repository
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Salesforce%20DX%20MCP%20Server%2C%20now,an%20open%20source%20GitHub%20repository
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

{

 "servers": {

 "Salesforce DX": {

 "type": "stdio",

 "command": "npx",

 "args": [

 "-y",

 "@salesforce/mcp",

 "--orgs",

 "DEFAULT_TARGET_DEV_HUB",

 "--toolsets",

 "all"

]

 }

 }

}

In this configuration, we name the server “Salesforce DX” (you will see this name in the VS Code UI). We

specify that it should be launched via npx (using the stdio communication type). The arguments we

pass are important:

--orgs "DEFAULT_TARGET_DEV_HUB" – The --orgs flag is required and defines which org(s) the

MCP server is allowed to access (Source: github.com)(Source: github.com). Here we use

DEFAULT_TARGET_DEV_HUB , which means the server can access your default Dev Hub org (as set in

your SFDX config). This is typically what you want for scratch org automation, since creating a

scratch org requires a Dev Hub. You can allow multiple orgs (e.g., a Dev Hub and a specific scratch

org or sandbox) by listing aliases/usernames separated by commas (Source: github.com). Allow-

listing orgs is a critical security step – the MCP server will only operate on orgs you explicitly

permit (more on that in the security section). For example, if your Dev Hub alias is DevHub , you

could put "--orgs", "DevHub" or use the default as shown. Avoid using ALLOW_ALL_ORGS except

in safe demos, as that would let the AI access any org you’ve authenticated (Source: github.com).

--toolsets "all" – This flag specifies which categories of tools to load. By default, if you omit

this, all available toolsets are enabled (Source: github.com). In our example, we explicitly set "all" for

completeness. Salesforce DX MCP currently categorizes tools into groups like orgs (org

management), metadata (deploy/retrieve), data (queries), users (user and permission

management), testing (running tests) (Source: developer.salesforce.com). You could limit the

Salesforce DX Scratch Org Automation Using the MCP Server

Page 6 of 28

https://github.com/salesforcecli/mcp#:~:text=The%20%60,values%20for%20the%20two%20arguments
https://github.com/salesforcecli/mcp#:~:text=Configure%20Orgs
https://github.com/salesforcecli/mcp#:~:text=These%20are%20the%20available%20values,orgs%60%20argument
https://github.com/salesforcecli/mcp#:~:text=%2A%20%60DEFAULT_TARGET_ORG%60%20,specific%20org%20by%20specifying%20its
https://github.com/salesforcecli/mcp#:~:text=The%20Salesforce%20DX%20MCP%20Server,in%20turn%20reduces%20the%20context
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Tools%20are%20grouped%20into%20logical,sets%20for%20dynamic%20loading
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

toolset for performance or security (e.g., if you only want to allow data queries and nothing else, you

might use "--toolsets", "data,orgs"). For scratch org automation, the orgs , metadata , and

testing toolsets are most relevant, so you might list those specifically (Source: github.com). In

Developer Preview, “all” is fine.

Save the mcp.json . (Alternatively, you can configure this globally in VS Code settings under an

mcp.servers section (Source: github.com), but per-project config is convenient for project-specific org

allow-lists.)

Now open VS Code. Press Ctrl+Shift+P (Cmd+Shift+P on macOS) to open the Command Palette, and

run the command “MCP: List Servers”(Source: github.com). You should see the "Salesforce DX" server

listed. Click on it and choose “Start Server”(Source: github.com). This will launch the MCP server in the

background. You can check VS Code’s Output panel (select “MCP” channel) to see the server status

messages – it should indicate that the server started and is listening.

At this point, the MCP server is up and connected to your Dev Hub (and any other allow-listed orgs). It’s

essentially waiting for requests from an AI client. The next step is to connect an LLM-powered interface

to actually send those requests.

2. Integrate an LLM for Natural Language Prompts

To use the MCP server, you need an MCP-compatible AI client. Several options exist:

VS Code + GitHub Copilot Chat (in “Agent” mode) – This is one of the easiest ways for developers

to get started, since you may already use VS Code and Copilot. Copilot Chat (as of its latest versions)

supports MCP integration in an “Agent” chat mode where it can utilize tools.

Salesforce Agentforce for Developers (A4D) – Salesforce’s own agentic IDE/chat (currently in

pilot) which natively supports MCP (Source: developer.salesforce.com).

Third-party AI chat apps like Cursor, Claude Desktop, Cline, Zed, etc., that have added MCP

client support (Source: github.com).

For this tutorial, we’ll illustrate using VS Code with GitHub Copilot in agent mode, since we’ve already

configured VS Code. Ensure you have the GitHub Copilot Chat extension enabled and logged in. In VS

Code’s Command Palette, run “Chat: Open Chat (Agent)” – this switches the Copilot chat into agent

mode (as opposed to the normal “Ask” mode) (Source: github.com). You might see a notification to

confirm the mode. In Agent mode, Copilot is aware of MCP servers.

Now, in the Copilot Chat panel, you can start giving instructions in plain English. When you send a

prompt, Copilot (the LLM) will decide if it should call an MCP tool to fulfill the request. If so, it will invoke

the MCP server we started. The MCP server will analyze the request against its toolset and choose the

Salesforce DX Scratch Org Automation Using the MCP Server

Page 7 of 28

https://github.com/salesforcecli/mcp#:~:text=This%20example%20shows%20how%20to,MCP%20server%20for%20VS%20Code
https://github.com/salesforcecli/mcp
https://github.com/salesforcecli/mcp#:~:text=arguments
https://github.com/salesforcecli/mcp#:~:text=2,and%20enter%20MCP%3A%20List%20Servers
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Connect%20Agentforce%20to%20any%20MCP,server
https://github.com/salesforcecli/mcp#:~:text=But%20you%27re%20not%20limited%20to,Desktop%2C%20Zed%2C%20Windsurf%2C%20and%20more
https://github.com/salesforcecli/mcp#:~:text=4,new%20GitHub%20Copilot%20chat%20session
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

appropriate action. Importantly, the client won’t just run it immediately – typically, it will show you what

tool/action it’s going to perform and ask for confirmation (especially in VS Code, where you’ll see a

“Continue” button) (Source: github.com). This is a safety feature to let you verify that the AI interpreted

your request correctly before making changes to your org.

Let’s try some example natural language commands to see how this works. Here are a few you can

experiment with (these are adapted from the official examples (Source: github.com)):

“List all my orgs.” – The AI will call the sf-list-all-orgs tool, which returns the list of all orgs

(including Dev Hub, scratch orgs, sandboxes, etc.) you have connected. You’ll get a response listing

org aliases, usernames, org type, and expiration dates for scratch orgs (Source: github.com). This is

a quick way to see your active scratch orgs and their status.

“Which are my active scratch orgs?” – This is a more specific query; the agent might use the same

list orgs tool but filter for scratch orgs that are active (not expired). The result will show which

scratch orgs are currently usable (e.g., those not past their expiration).

“Show me all the Accounts in the org with alias my-org .” – The AI will recognize this as a data query

and likely invoke sf-query-org , constructing a SOQL query under the hood. It might run SELECT *

FROM Account (or a refined field list) on the org my-org and return the results as JSON or a table

(Source: github.com). You didn’t have to remember the exact SOQL syntax or CLI command – the

agent did it for you.

“Deploy everything in my project to the org with alias my-org .” – This prompt would trigger the sf-

deploy-metadata tool. The MCP server knows the context of your DX project (it can see your local

source files) and will deploy the source in your project (e.g. the force-app directory) to the target

org (Source: github.com). In essence, it runs the equivalent of sf project deploy start --

target-org my-org for you. If there are any deployment errors, those will be caught and shown by

the agent.

You can see how intuitive this becomes – you’re conversing with your DevOps assistant. For scratch org

automation specifically, you might say things like: “Create a new scratch org for testing and deploy the

latest code there”, or “Set up a scratch org with API version 64.0 and enable feature X”. We’ll address

the scratch-org-specific flows in the next step, but the key point here is that once your MCP server is

running and your LLM client is connected, you can drive Salesforce DX with natural language. The

agent will use the MCP tools we configured to interpret your requests. Each tool corresponds to a secure

function call rather than an open-ended instruction, which keeps the AI on the rails (for instance, if you

ask to create a scratch org, the agent will need an MCP tool for that, otherwise it will inform you or

attempt another approach rather than doing something unpredictable).

Salesforce DX Scratch Org Automation Using the MCP Server

Page 8 of 28

https://github.com/salesforcecli/mcp#:~:text=5,the%20results%20of%20your%20request
https://github.com/salesforcecli/mcp#:~:text=Try%20out%20these%20examples%3A
https://github.com/salesforcecli/mcp#:~:text=Try%20out%20these%20examples%3A
https://github.com/salesforcecli/mcp#:~:text=Try%20out%20these%20examples%3A
https://github.com/salesforcecli/mcp#:~:text=Try%20out%20these%20examples%3A
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Behind the scenes, the MCP server’s structured output also helps the AI. It provides a description of what

tool it chose and why, as well as the expected outcome. You as the human confirm, and then the action

executes. This event flow can be logged (for audit) and is much easier to troubleshoot than an AI directly

running shell commands. You’re always in the loop when using it interactively like this.

3. Automate Scratch Org Creation, Configuration, and Deletion via AI

Now for the main event: using the LLM+MCP setup to spin up scratch orgs, configure them, and tear

them down with minimal manual effort. In a traditional Salesforce DX workflow, creating a scratch org

involves crafting a scratch org definition JSON, running sf org create scratch , then deploying

source, running tests, etc., and finally deleting the org. Let’s see how each of these stages can be

facilitated by our AI agent:

Creating a new Scratch Org (Spin Up): As of the initial release, the Salesforce DX MCP Server’s

toolset includes many org management functions (like listing orgs) but does not yet have a one-step

“create scratch org” tool in the default set (Source: developer.salesforce.com). However, you can still

achieve scratch org creation in a couple of ways. One approach is to simply allow the agent to use

the Dev Hub and invoke the scratch org creation command indirectly. For example, you might

prompt: “Use the Dev Hub to create a new scratch org with alias demo-scratch for 7 days.” The

agent knows your Dev Hub is authorized (we passed DEFAULT_TARGET_DEV_HUB earlier) and it might

attempt to run an org creation. If the MCP server doesn’t have a direct tool, the AI could fall back to

suggesting a CLI command for you (and it might show something like sf org create scratch --

alias demo-scratch --duration-days 7 ...). In practice, it may respond with instructions or

even attempt using a generic “run command” tool if available. Tip: The Salesforce DX team is

continually adding new tools, and scratch org creation may be included soon (Source:

developer.salesforce.com). If it’s available in your version, the agent will simply perform it. If not, you

can still use a manual step or create a custom extension tool.

For the sake of demonstration, let’s assume we extend the MCP server with a custom tool (or an

update provides it) called sf-create-scratch-org . This tool would wrap the org create scratch

function. With that in place, you could say: “Create a scratch org for project XYZ with alias projXYZ-

test and enable the Customer feature” (typo intentional for how one might say “Customer

Community”). The AI would interpret that and call sf-create-scratch-org with parameters (alias,

features, etc.). The result: within a few seconds, a new scratch org is created on your Dev Hub. The

response might include the org ID, the username, and the expiration date (just like the CLI output). In

fact, you can achieve something similar even without a built-in tool by pre-defining your scratch org

definition in a file and instructing the AI accordingly. For instance: “Run the scratch org definition file

config/project-scratch-def.json to create a new org alias=TestOrg.” The agent may then

effectively execute the creation.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 9 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Tools
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=What%E2%80%99s%20next%20for%20MCP%3F
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Under the hood, creating a scratch org uses the Salesforce DX API via the Dev Hub. The CLI

command (for reference) is:

sf org create scratch --definition-file config/project-scratch-def.json --alias Test

This would create an org from the given definition file, alias it as TestOrg, set it to expire in 7 days,

and mark it as your default org for convenience. The MCP server could call the equivalent function

directly via the DX libraries, which is faster and avoids any CLI text parsing. (In fact, the MCP server

uses the DX libraries in TypeScript instead of shelling out to sf , which improves speed and security

(Source: github.com).)

Configuring the Scratch Org (Deploying Metadata & Assigning Permissions): Once the scratch

org is up, it’s empty – so you’ll typically deploy your source code and maybe some config data to it.

This is where the MCP tools shine because deployment and setup tasks are already well-

supported. You can simply ask: “Deploy all metadata to the new scratch org” or “Push my project

source to org TestOrg and run the setup script”. The agent will likely break this down into a deploy

step (using sf-deploy-metadata tool for pushing source from your local DX project to the org

(Source: developer.salesforce.com)) and possibly a data or script execution step. For example, if you

have an Apex setup script, you might have the agent run it using an Apex execution tool. There is no

explicit MCP tool listed for running anonymous Apex in the initial set, but the community has

extended MCP servers to do this (Source: reddit.com) – or you could deploy a specific Apex class

and run it as part of tests.

A common task after deployment is assigning permission sets to the scratch org user (for example,

your app’s permission set so that the default user can actually access the app’s features). You can

instruct the AI: “Assign the MyAppPermset permission set to the scratch org user.” The MCP server

has a tool for that: sf-assign-permission-set (Source: developer.salesforce.com). The agent will

call it, which effectively runs the command to assign that perm set to the current user. This saves

you from having to copy-paste user IDs or run separate commands – the AI knows which user

(usually the default admin user of the scratch org) to target. In CLI terms, it’s doing something like:

sf org assign permset --name MyAppPermset --target-org TestOrg

(where TestOrg is the alias of the scratch org) – exactly as we’d do manually (Source:

developer.salesforce.com). The AI just did it for you.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 10 of 28

https://github.com/salesforcecli/mcp#:~:text=,tool%20architecture%20for%20easy%20extensibility
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=%2A%20%60sf,Apex%20tests%20and%20test%20suites
https://www.reddit.com/r/SalesforceDeveloper/comments/1m0rdoc/salesforce_mcp/#:~:text=I%20have%20an%20MCP%20server,names%20and%20relationships%20by%20itself
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=%2A%20%60sf,queries%2C%20returning%20records%20as%20JSON
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=sf%20org%20assign%20permset%20,name%20CloudHouse
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

If your scratch org setup involves loading sample data (e.g., importing a set of records), you could

use natural language for that as well. There isn’t a dedicated import tool in the default set, but you

can use sf-data tools (like sf-query-org combined with some CSV import command, or a custom

script). One creative approach: ask the AI to create test data via Apex. Community contributors

have demonstrated using an AI agent to generate data records on the fly. For example, one

developer wrote: “create 10 test custom object records in the test scratch org, populate required

fields” – the AI was able to interpret this, figure out the object’s API name and required fields by

querying the org’s schema, and then insert those records (Source: reddit.com)(Source: reddit.com).

All of that was done through an MCP server extension without the user manually writing a single line

of SOQL or Apex! This illustrates the power of natural language workflows: you describe the end

state (10 test records exist), and the AI figures out the steps (describe object → construct records →

insert via Tooling or SOAP API).

Running Tests (if needed): In many scenarios, after deploying to a scratch org, you’ll run Apex tests

or other automation. You can simply instruct the agent to run tests. For example: “Run all Apex tests

in the scratch org” will trigger the sf-test-apex tool to execute your test suites (Source:

developer.salesforce.com). The results (test passes/failures and code coverage, if requested) will be

returned to you, likely formatted by the agent for readability. In CLI, this corresponds to sf apex run

test --target-org TestOrg (and you can add flags like --code-coverage or specify certain

suites) (Source: github.com). The AI can summarize the results or show you the raw output.

Deleting the Scratch Org (Tear Down): Once you’re done with the scratch org – for example, after

your CI job finishes or your testing is complete – you should delete it to free up resources (and

because it’s ephemeral by nature). This is straightforward with a command like:

sf org delete scratch --target-org TestOrg --no-prompt

which marks the org for deletion in the Dev Hub and removes it from your local org list (Source:

developer.salesforce.com)(Source: developer.salesforce.com). Through our AI assistant, you might

just say: “Delete the scratch org TestOrg .” If an MCP tool exists (say sf-delete-org), it will use

that. If not, the agent will confirm and invoke the CLI action. The --no-prompt flag ensures it

doesn’t ask for interactive confirmation (since your AI flow is already confirming via the chat). The

org will be disposed of, and you’ll get a confirmation message.

To summarize this automation sequence, here’s what a single conversation with the AI could look like

to accomplish a full cycle, assuming all necessary tools are available:

Salesforce DX Scratch Org Automation Using the MCP Server

Page 11 of 28

https://www.reddit.com/r/SalesforceDeveloper/comments/1m0rdoc/salesforce_mcp/#:~:text=I%20have%20an%20MCP%20server,names%20and%20relationships%20by%20itself
https://www.reddit.com/r/SalesforceDeveloper/comments/1m0rdoc/salesforce_mcp/#:~:text=For%20example%20I%20can%20type,the%20records%20in%20the%20org
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=%2A%20%60sf,Apex%20tests%20and%20test%20suites
https://github.com/forcedotcom/salesforcedx-vscode/issues/5349#:~:text=I%20downgraded%20my%20salesforce%20CLI%2C,n
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Delete%20a%20scratch%20org%20with,org
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Delete%20the%20scratch%20org%20without,prompting%20to%20confirm
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

You: Create a new scratch org for the feature branch and deploy the project to it. AI (Agent):

Identified action: Create scratch org with alias "feature-123" (7-day default) → Deploy project

metadata to "feature-123". (AI presents this plan and waits for confirmation.) You: Continue. AI:

Executing: Scratch org "feature-123" is created (Org ID: 00D..., Username: test-...@example.com,

expires in 7 days) (Source: developer.salesforce.com). Deploying 42 components... Deployment

succeeded. All Apex tests will now run. You: Great, run the tests. AI: Executing: Running Apex tests in

"feature-123"... All 57 tests passed (100% success) in 28s. You: Assign the "FeaturePerms" permission

set in that org. AI: Executing: Permission set "FeaturePerms" assigned to user in org "feature-123"

(Source: developer.salesforce.com). You: Populate some test data. AI: Executing: Created 10 Account

records and 20 Contact records with sample data in org "feature-123". You: Looks good. Delete that

org now. AI: Executing: Scratch org "feature-123" deleted (Source: developer.salesforce.com).

This dialogue condenses perhaps 5–10 manual CLI commands and several minutes of effort into a fluid

interaction. It illustrates the lightning-fast automation possible – not because the scratch org magically

builds faster (Salesforce still takes some tens of seconds to allocate an org), but because the entire

workflow is streamlined and hands-off. You can kick off an environment setup in one go, then focus on

other tasks while the agent handles the mechanics.

Implementation Details: CLI Commands and Configuration

Samples

Let’s ground the above steps in some concrete implementation details. Underneath the natural language

layer, these are the Salesforce DX CLI commands and project configurations being used. You can use

these directly as well (for scripting or troubleshooting). For reference, here are some key commands in

the unified sf CLI corresponding to scratch org lifecycle tasks and what we did via the AI:

1. Create a new scratch org using a definition file sf org create scratch --definition

Let’s break down what’s happening here:

Scratch Org Definition: The first command references a project-scratch-def.json file. This file

defines the org’s shape – edition, features, settings, etc. For example, it might specify "edition":

"Developer" , "features": ["Communities", "EinsteinAnalytics"] , and various org settings

(like enabling certain preferences). You share this file with your team so everyone’s scratch orgs are

consistent (Source: developer.salesforce.com). In an automated context, you could even have

multiple definition files (for different purposes) and instruct the AI which one to use (e.g., “create a

scratch org using the UAT definition”).

Salesforce DX Scratch Org Automation Using the MCP Server

Page 12 of 28

mailto:test-...@example.com
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Salesforce%20CLI%20marks%20the%20org,the%20org%20from%20your%20computer
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Assign%20the%20Dreamhouse%20permission%20set,scratch
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Delete%20the%20scratch%20org%20without,prompting%20to%20confirm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=The%20scratch%20org%20is%20a,personal%20data%20to%20scratch%20orgs
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Org Creation: The sf org create scratch command is the same one the MCP server would call

internally (via library) to spin up the org. We specify the Dev Hub with --target-dev-hub (if you

omit it, it uses your default Dev Hub). The --alias is important because it allows subsequent

commands to refer to the org easily. The --set-default here is optional (it just makes

DemoScratch your default org for this project in the CLI context). The --duration-days 7 sets it to

auto-expire in 7 days (you can adjust up to your Dev Hub’s limit, often 7 or 30). In an AI-driven flow,

these details might be inferred (if you didn’t specify a duration, it would use the default).

Deploy Source: sf project deploy start is a relatively new CLI command (in the unified CLI)

that replaces sfdx force:source:push for deploying local source to the org. We use --source-

dir force-app assuming our metadata is in the force-app directory (that’s the default for a DX

project). This command will deploy all components to the scratch org. The AI, via sf-deploy-

metadata , essentially performs this step (Source: developer.salesforce.com). If there are errors (say,

the scratch org is missing a prerequisite or a dependent package), the MCP server would catch the

exception and the AI could present the error message. In an interactive session, you could then ask

the AI for help resolving the error – something much harder to do in a static script.

Assign Permset: sf org assign permset as shown assigns “YourPermsetName” to the scratch

org’s user (Source: developer.salesforce.com). In context, if you have multiple users or want to

assign to a specific user, you can use --on-behalf-of flags (but for a scratch org’s main user,

that’s not necessary). This step often is required if your package or app has permission sets that

need applying.

Run Tests: sf apex run test will run Apex tests. By default, it runs them asynchronously and

displays results when done. We added --result-format human to see a summary; you could use -

-result-format json if you wanted to parse results or feed them back into the AI for analysis. The

--code-coverage flag tells Salesforce to calculate coverage. In a CI scenario, you might not need

that every time, but it’s useful for quality gates. The MCP’s sf-test-apex tool corresponds to this

action. After running tests, the MCP server will return the outcome, which the AI can parse. For

example, it might know to report how many tests failed and even identify the failed test names. (An AI

could even automatically open the class or suggest a fix if a test failed – possibilities for the future!)

Org Deletion: sf org delete scratch does exactly what it says – deletes the scratch org from

both your local and server side (Source: developer.salesforce.com). The --no-prompt is used in

non-interactive environments (like CI) so it doesn’t ask “Are you sure?”. In our AI scenario, we

implicitly confirmed via the chat, so a prompt isn’t needed. Once this is done, your Dev Hub frees up

a slot and you’ve cleaned up.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 13 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=%2A%20%60sf,Apex%20tests%20and%20test%20suites
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Assign%20the%20Dreamhouse%20permission%20set,scratch
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=match%20at%20L1321%20sf%20org,org
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

In practice, if you were writing a script for CI/CD, you would include similar commands. Many teams

today have scripts or Jenkins pipelines with these steps: create org, deploy, test, delete (Source:

salesforceben.com). The innovation with MCP and AI is that these steps can be triggered and

orchestrated by a higher-level agent, potentially simplifying the pipeline configuration. For example, you

might have an agent monitor GitHub pull requests and, on a new PR, the agent could automatically do

“create a scratch org, deploy the PR’s code, run tests, comment back with results.” This could be done

with traditional scripting too, but an AI agent might handle edge cases or gather additional info (like if

tests fail, it could analyze logs and post a summary). The MCP server provides the reliable interface for

such an agent to execute Salesforce-specific tasks without human intervention.

Project setup considerations: When using scratch orgs (whether automated by AI or not), make sure

your Salesforce DX project is set up with all required config:

Your sfdx-project.json should specify the namespace (if any) and package directories.

If you need certain features in the org (Communities, Einstein, etc.), list them in the scratch definition

or use an Org Shape if available (Source: salesforceben.com).

Keep your project source in sync with what needs to be deployed. Source tracking in scratch orgs

can help here (it’s on by default; you can disable it for performance in CI but it’s generally useful

during development) (Source: developer.salesforce.com)(Source: developer.salesforce.com).

Everything we’ve shown so far – from the AI prompts to the CLI commands – assumes a well-prepared

DX project. The better your project’s structure and definitions, the smoother the automation. The MCP

server doesn’t magically handle missing pieces; for example, if your scratch org needs a connected app

or some data, you have to ensure the instructions or project include those steps. That said, with an AI in

the loop, you can often just tell it what you need and it might generate or suggest the solution (like

creating dummy data or enabling a setting) on the fly.

Security, Governance, and Best Practices

Whenever we introduce automation – especially AI-driven automation – into a DevOps process, security

and governance must be top of mind. Salesforce recognized this in the design of the DX MCP Server: it’s

built with multiple layers of protection to ensure that using an AI agent does not inadvertently

compromise your orgs or data. Let’s go over the key security features and best practices, including org

allow-listing, error handling, audit logging, and role-based access control (RBAC) considerations.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 14 of 28

https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=I%20have%20broken%20the%20creation,three%20simple%20steps%20for%20you
https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=What%20Is%20an%20Org%20Shape,Beta
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=Source%20Tracking
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=We%20recommend%20you%20enable%20source,any%20conflicts%20between%20the%20two
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Org Allow-Listing and Access Control

The most prominent security control in the MCP server is the org allow-list. When you start the server,

you must specify which orgs it can interact with (using the --orgs flag, as we did in our config) (Source:

github.com). The server will then only allow tools to run against those orgs. If an AI agent tries to access

an org outside that list, the request will be denied. This prevents a scenario where the AI, due to a

misunderstanding or even a prompt injection, ends up accessing your production org or another sensitive

environment – such an action would simply not be permitted if that org isn’t allow-listed.

Best practice: Keep the allow-list as narrow as possible. In a scratch org automation context, usually the

only org that needs to be listed is your Dev Hub (since scratch orgs are created through the Dev Hub and

inherit its credentials initially) and perhaps any long-lived org that you use for reference data or tests. You

might allow a specific testing sandbox or a UAT org if you plan to have the AI interact with those. But do

not put your main production org in the allow-list unless you have a very specific, read-only use case

and you trust the AI completely. The default values DEFAULT_TARGET_ORG and

DEFAULT_TARGET_DEV_HUB are convenient because you can locally set your default orgs for the project to

whatever is safe for that context (Source: github.com). For example, in your CI environment, you might

set the default Dev Hub to a sandbox Dev Hub (some companies have a dedicated “CI Dev Hub” to avoid

consuming scratch allocations from production). Then the MCP server will only use that.

Under the hood, the MCP server uses the OAuth credentials that are already stored by the Salesforce

CLI (in encrypted form on your machine) to authenticate to allowed orgs (Source: github.com). You never

have to hard-code usernames or passwords or tokens in the MCP config. This is great because it means

no plain-text secrets are floating around in your AI prompts or logs. The server will also never expose

session tokens or refresh tokens via the tools – instead, if a tool needs to reference an org, it passes

the org’s username/alias internally, and the actual token stays hidden (Source: github.com). Even the AI

agent doesn’t see your secrets; it only sees, say, “using org alias DevHub” and maybe the username,

which is usually not sensitive (often a generic username for scratch orgs).

Additionally, the DX MCP server runs locally under your user permissions. It’s not a cloud service (unless

you host it yourself somewhere) – meaning the scope of access is the same as what you have via CLI.

This is a form of RBAC in itself: the AI can’t escalate privileges beyond what your user can do. If your Dev

Hub user is set up so that it can only create scratch orgs and not modify certain data, the AI is bound by

that. Salesforce recommends using dedicated low-privilege users for automations. For instance, your CI

user might not have permission to deploy to production, so even if the AI somehow got a wild idea to

deploy there, it would fail authentication.

In future, Salesforce’s Agentforce platform will enhance this with an enterprise-grade MCP registry

where admins can centrally govern which MCP servers (and thus which tools/actions) an AI agent can use

(Source: developer.salesforce.com)(Source: developer.salesforce.com). For example, an admin could say

Salesforce DX Scratch Org Automation Using the MCP Server

Page 15 of 28

https://github.com/salesforcecli/mcp#:~:text=Configure%20Orgs
https://github.com/salesforcecli/mcp#:~:text=%2A%20%60DEFAULT_TARGET_ORG%60%20,specifying%20its%20username%20or%20alias
https://github.com/salesforcecli/mcp#:~:text=,configuration
https://github.com/salesforcecli/mcp#:~:text=,MCP%20tools
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Agentforce%20will%20include%20a%20native,enforce%20security%20policies%20and%20identity
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Authorized%20admins%20will%20have%20a,access%2C%20and%20how%20they%20operate
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

“agents are allowed to use the DX MCP server but only the query and test tools, not deployment tools”

depending on roles. Agentforce will also enforce org-level policies, rate limits, and tie agent actions to an

identity. In our current local setup, we rely on our own caution and the allow-list.

Key takeaways for allow-listing:

Always double-check the --orgs argument when starting the server. List only what’s necessary

(e.g., DevHub,myScratch1,testSandbox etc.).

Use aliases in the allow-list rather than full usernames when possible, for clarity.

Avoid ALLOW_ALL_ORGS except perhaps on a throwaway development environment. Even then, it’s

better to be explicit.

Remember to authorize the orgs via sf org login (or sfdx force:auth) beforehand – the MCP

server cannot access an org you haven’t authenticated to in CLI (Source: github.com).

Remove or rotate org authorizations periodically. If an auth is removed from the CLI keychain, the

MCP server can’t use it anymore, which could be a way to revoke access if needed.

Handling Errors and Logging AI Actions

No automation is complete without error handling and logging. When the AI agent attempts an action via

MCP, a few things can go wrong: the tool might throw an error (e.g., deployment failed, test failures, org

not found), or the AI might misinterpret your intent. The current MCP integration in VS Code (with

Copilot) handles errors by displaying them in the chat. For instance, if a deployment fails, you’ll see the

error output (just as you would in the CLI) and the AI might even offer to help fix it. As a user, you should

treat these error messages just as you would any CLI error – inspect them, adjust your inputs (or prompt

the AI to try something different), and proceed. The advantage is that the AI can often parse the error

and suggest a resolution. For example, if a metadata deployment error says a field is missing, you could

ask the AI, “Why did the deployment fail?” and it might analyze the error and tell you which component is

problematic.

From a system perspective, the MCP server logs all requests and actions to its standard output (and VS

Code shows these in the Output pane when verbosity is turned up). You can increase logging detail by

running the server with debug flags (if supported) or simply capturing the output. It’s wise to keep logs

of AI-driven operations, especially if multiple people or an automated system is using the MCP server. In

a CI environment, for instance, you’d want to capture the log of what the agent did to diagnose any issues

or unintended actions.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 16 of 28

https://github.com/salesforcecli/mcp#:~:text=MCP%20server,with%20commas
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Consider enabling audit logging in critical orgs themselves as well – e.g., Login History, Setup Audit Trail

in Salesforce – to catch any changes made by the automation user. If the AI mistakenly tries to modify

something it shouldn’t (say, an object in the Dev Hub), you’d see it in the org’s audit trail.

For error handling, one neat feature of the DX MCP server is the sf-resume tool (Source: github.com). If

a long-running operation doesn’t complete (maybe the AI was interrupted or a network issue occurred),

sf-resume can attempt to continue it. This is similar to how sf org resume scratch would continue a

scratch org creation if it was started async (Source: developer.salesforce.com)(Source:

developer.salesforce.com). The AI can leverage such a tool to recover from interruptions. For example, if

you started creating a scratch org and it was taking too long (the AI might time out), you could later say

“Resume the scratch org creation” and the agent could call sf-resume to finalize it. This kind of

resilience is important for automated pipelines.

AI-specific failure modes: If the AI completely misunderstands a request, it might choose the wrong

tool. The MCP protocol is designed to mitigate this by having a clear contract for each tool (inputs and

outputs). In testing, it’s been found that agents become quite reliable when they have a fixed set of tools

– they don’t hallucinate as much because they know the “vocabulary” of tools at hand (Source:

developer.salesforce.com)(Source: developer.salesforce.com). Nonetheless, always verify the action

before you confirm (the VS Code flow requires that). If using the MCP server in a fully autonomous mode

(like a script that just trusts the AI’s decisions), ensure you have safeguards: timeouts, sanity checks (did

the scratch org get created successfully before deploying?), and perhaps limits on what can be done

(e.g., don’t allow deletion commands unless certain conditions are met).

Role-Based Permissions and Multi-User Governance

In our scenario, we’ve been talking about a single developer or a CI service account using the MCP

server. But in larger teams, you might have multiple people or agents interacting with Salesforce. RBAC

(Role-Based Access Control) in this context can mean a few things:

1. Salesforce Org Roles/Profiles: The scratch orgs and Dev Hubs themselves have user

profiles/permissions. For instance, your Dev Hub might only allow users with a certain profile to

create scratch orgs. Ensure that the user account you’re using for automation has just the needed

permissions (e.g., “Modify All Data” is not necessary to create scratch orgs; a standard Salesforce

Platform user with Dev Hub enabled and maybe Customize Application might suffice). By limiting

that, even if something goes awry, the blast radius in the org is limited.

2. Agent/User Identity: If multiple team members use the MCP server (say, running on a shared CI

machine or a jump box), you’ll want to know who initiated what action. Currently, the local MCP

server doesn’t enforce user identity – it runs under whatever system user started it. It might be wise

to run separate instances per user or have the agent include an identifier in the request (some

Salesforce DX Scratch Org Automation Using the MCP Server

Page 17 of 28

https://github.com/salesforcecli/mcp
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=Request%20the%20org%2C%20but%20don%27t,wait%20for%20it%20to%20complete
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#:~:text=If%20the%20command%20continues%20to,pass%20it%20the%20job%20ID
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=This%20open,code%20developers%20a%20way%20to
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Note%3A%20The%20Salesforce%20DX%20MCP,engineer%20CLI%20syntax%20or%20workflows
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

advanced setups could tag requests). Salesforce’s upcoming Agentforce registry will handle this by

requiring agents to authenticate and linking actions to a human or a trusted agent identity (Source:

developer.salesforce.com). For now, a simple practice is to log the username in the chat or comment

when an action is done, if you integrate with collaboration tools.

3. Tool Access Control: We touched on this – not every user/role should necessarily have access to

every tool. Maybe junior devs shouldn’t be deploying to certain orgs via AI, or maybe testers can

query data but not create or delete orgs. The MCP server itself doesn’t have a built-in user

management, but you can accomplish some separation by running it with different allow-lists or

using different auth users. For example, you could have a separate Dev Hub for a testing team that

only allows scratch orgs with limited features (Salesforce provides mechanisms like Dev Hub feature

limits and scratch org edition allocations to indirectly control that (Source: salesforceben.com)).

4. Network and Scope: Ensure the MCP server is only reachable by intended clients. If you run it on a

CI server, it typically listens on stdin or localhost (stdio in VS Code, which is internal). Be cautious if

configuring it to listen on a TCP port – use firewall rules or run it behind secure infrastructure so

random processes can’t send it commands. The default VS Code setup uses stdio (no network

exposure) (Source: github.com), which is safe.

5. Never in Prod: This should go without saying, but you should not use an LLM agent to run arbitrary

write operations in a production org. Even if you allow-list a prod org for read queries or something,

keep a very tight leash. The open-source MCP servers (like MCP-Force by the community) explicitly

warn: “Please use it ONLY in a sandbox, a developer org or a scratch org. NEVER use this in

production: you have been warned.”(Source: lobehub.com). That’s sage advice. For production

deployments, still rely on established CI processes (which could themselves be triggered by an AI,

but the actual deployment can be a standard script with human code reviews etc.). If you do let the

AI deploy to a staging or prod environment, implement approvals – perhaps the AI suggests the

deployment and a human ops team member approves it (similar to GitHub’s Deployments approvals).

In summary, treat the AI agent as you would a junior developer or release engineer: give it access to the

environments it needs, but no more; supervise its activity through logs and approvals; and ensure there’s

an audit trail. The DX MCP server was built with many of these principles in mind – it avoids exposing

secrets, it enforces explicit allow-lists, and it keeps the AI’s actions deterministic and visible (Source:

github.com)(Source: github.com). By following best practices, you can reap the productivity benefits of

AI automation without sacrificing security or governance.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 18 of 28

https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Authorized%20admins%20will%20have%20a,access%2C%20and%20how%20they%20operate
https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=1,be%20active%20at%20one%20time
https://github.com/salesforcecli/mcp#:~:text=%7B%20,%7D
https://lobehub.com/mcp/rupertbarrowtm-mcp-force#:~:text=EXPERIMENTAL
https://github.com/salesforcecli/mcp#:~:text=The%20Salesforce%20DX%20MCP%20Server,security%20as%20a%20top%20priority
https://github.com/salesforcecli/mcp#:~:text=,Granular%20access%20control
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Performance and Speed Improvements

One of the reasons we call this “lightning-fast” scratch-org automation is the improvement in speed and

efficiency it offers. It’s worth discussing exactly where these speed gains come from, and setting

expectations for actual performance.

First, there’s the developer productivity angle: Using natural language and AI to handle scratch org

tasks can make developers significantly faster. Instead of pausing to look up CLI syntax or clicking around

in Salesforce UI, a dev can fire off an AI request and continue thinking about the higher-level problem.

This reduces context switching and idle time. For example, creating and preparing a scratch org manually

might take a developer 5–10 minutes of work (writing commands, waiting for each to finish,

troubleshooting any typos). With the AI, it’s maybe 1 minute of describing what’s needed, and then a few

minutes of waiting while the org is created and the script runs – during which the developer could review

code or do something else. The end-to-end elapsed time might be similar (because org creation and

deployments have fixed durations), but the hands-on keyboard time is much less. In a team setting, this

adds up to faster iteration cycles.

From a system performance perspective, the MCP server can also offer speed improvements:

No CLI Spawn Overhead: Each time a script calls the sf CLI, it has to start a Node.js process, load

the CLI, authenticate, etc. The MCP server, by contrast, runs as a persistent process. It uses the

Salesforce DX libraries in-memory, so actions execute as function calls. This can shave off a few

seconds from each operation. For instance, retrieving metadata via CLI might take X seconds, and

via MCP perhaps X minus the CLI startup time. Over many operations, this is a win.

Tool Context Optimization: The MCP protocol allows the client (AI) to load only the tools it needs.

Recall that we can specify --toolsets or even use --dynamic-tools mode (Source: github.com).

Dynamic loading means the MCP server starts with a minimal footprint and only loads, say, the org

tool when an org command is issued, the data tool when a query is issued, etc. This keeps the AI’s

context (what it “sees” about available tools) smaller, which can make the LLM faster and more

accurate (less to parse) (Source: developer.salesforce.com). It also reduces memory usage. In

practice, this improves performance marginally in terms of response time from the AI.

Parallelization Potential: In a traditional script, you often run tasks sequentially (create org, then

deploy, then test). An AI agent could potentially orchestrate tasks in parallel if possible (though in our

scratch org case, you usually have to deploy before testing). But think of other scenarios: the AI

could run multiple queries in parallel and aggregate results, etc. With MCP it could launch two tool

requests concurrently if the client supports it. This is more theoretical at the moment for scratch

orgs, but something to note for advanced use.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 19 of 28

https://github.com/salesforcecli/mcp
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Pro%20Tip%3A%20Hosts%20like%20Agentforce,memory%20use%20and%20improving%20performance
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Batching of Steps: An intelligent agent might combine steps when it makes sense. For example, if

you say “create an org and deploy and test,” a well-designed agent might initiate the org creation and

while the org is being created, prepare the deployment (maybe validate the source locally). As soon

as the org is ready, it kicks off the deploy, then the tests. A human might put waits between these or

not multitask as efficiently. This could cut down total pipeline time.

Salesforce’s own measure of success with the DX MCP server is that it “boosts agent effectiveness by

making common developer workflows faster and less error-prone.”(Source: developer.salesforce.com)

Faster and less error-prone often go hand in hand: if there are fewer retries due to mistakes, things finish

sooner. Especially in continuous integration, not having to re-run a failed job because of a trivial

command error is a big win.

We should also address the term “lightning-fast” a bit realistically. Creating a scratch org still takes

typically 30 seconds to a couple minutes depending on your org shape and Salesforce server load;

deploying metadata can also take a minute or two for a moderate project. Those are Salesforce platform

limitations that the MCP server doesn’t change. So your CI job that used to take, say, 10 minutes might

still take close to 10 minutes – but now you didn’t spend any human effort during those 10 minutes, and

the likelihood of success is higher on the first try. Where we do see dramatic speed gains is in the

iteration cycle. A developer can initiate an environment setup or a test run with one sentence, whereas

before they might manually do 5 different things. It feels instantaneous to request it, and then you get

the results consolidated. This can speed up interactive use during development significantly (anecdotal

reports suggest tasks that developers might ignore because they’re tedious can now be done quickly via

AI, e.g., quickly checking something in a scratch org via a query, etc.).

Salesforce and others are also working on benchmarks. Anecdotally, Twilio (which built an MCP server for

some of their APIs) found their approach “faster and more reliable” than previous methods in internal

tests (Source: twilio.com). For the DX MCP specifically, as new tools get added, we expect automation of

more steps. By Dreamforce 2025, Salesforce planned to release 3–5 new DX MCP tools each

month(Source: developer.salesforce.com), including potentially ones for code analysis and Lightning

components. Each new tool expands what the AI can do without human help, thus potentially speeding

up those tasks too.

Finally, consider the speed of onboarding – which is a performance of a different kind. If a new

developer can get a fully configured scratch org by running one AI command (or a simple script), that

might take 15 minutes instead of half a day reading docs and setting things up. That speed doesn’t show

up in a benchmark table, but it’s incredibly valuable in practice.

In summary, the combination of reduced command latency, fewer errors, and parallelizable, high-level

instructions makes MCP-driven workflows “fast” in the ways that matter: fast to invoke, fast to recover,

and fast to deliver results to the developer. As one user put it: the MCP-based approach is “more

Salesforce DX Scratch Org Automation Using the MCP Server

Page 20 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,prone
https://www.twilio.com/en-us/blog/developers/twilio-alpha-mcp-server-real-world-performance#:~:text=Real,reliable%20%E2%80%93%20but%20a
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=What%E2%80%99s%20next%20for%20MCP%3F
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

reliable – the agent gets it right on the first try more often, so I don’t waste time”. And in the Salesforce

world, where org operations themselves have some fixed costs, eliminating waste is where you gain time.

Use Cases: CI/CD, Testing Automation, and Developer

Onboarding

Let’s step back and look at how lightning-fast scratch org automation can be applied in real-world

scenarios. The technology is cool, but how do we leverage it in our development lifecycle effectively?

We’ll explore a few key use cases:

Continuous Integration and Delivery (CI/CD) Pipelines

Scratch orgs are a natural fit for CI/CD. A typical CI pipeline for Salesforce might do the following on each

commit or pull request: create a fresh scratch org, deploy the latest code, run all tests, report

results, then delete the org(Source: salesforceben.com). This ensures that every change is validated in

an isolated environment. Traditionally, this is achieved with CLI scripts integrated into tools like Jenkins,

CircleCI, Azure DevOps, etc., using the commands we outlined earlier. With MCP and AI, there’s an

opportunity to simplify and enhance this:

Pipeline as Conversation: Rather than maintaining a complex script, one could envision a CI agent

that understands high-level directives. For example, the pipeline configuration could say: “On PR

update, have Salesforce Agent do a full test run.” The agent (backed by the MCP server) knows to

create a scratch org, deploy, test, etc. This makes the pipeline config more declarative and

potentially easier to maintain. While this is forward-looking, it’s not far-fetched – it aligns with the

idea of “Policy as Code” but in natural language.

Dynamic Problem Solving: If a test fails in CI, a traditional pipeline just marks failure and stops. An

AI agent could, in theory, catch the failure and automatically gather more info (maybe rerun a specific

test with debug logs, or inspect recent commits to pinpoint an issue). It could then attach a summary

or even suggest a fix in the PR. These kinds of intelligent actions could drastically reduce the back-

and-forth in debugging CI failures. The MCP server enables this by giving the AI structured access to

run tests or queries as needed during the CI run. (For example, “Test failed? Query the org for error

logs or run a diagnostic Apex.”)

Multi-Stage Deployments: In continuous delivery, after tests pass, you might deploy to a staging

org or packaging org. An AI agent could handle promotion between environments by orchestrating

the needed commands (like creating a package version, etc., which future MCP tools might cover). It

Salesforce DX Scratch Org Automation Using the MCP Server

Page 21 of 28

https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=Scratch%20orgs%20are%20typically%20used,and%20deleted%29%20quickly
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

can follow conditional logic: e.g., “if tests pass in scratch org, then deploy to UAT org and notify QA”.

You can script that, but an agent can adapt more easily if something unusual happens (like UAT is

locked or requires a login – the agent could wait or request credentials if interactive).

In current practice, you can already incorporate MCP server in CI by running it on the CI agent and issuing

tool commands via an AI script or even cURL. But a simpler approach is using the CLI in CI (which is well-

established) for now, and gradually introducing AI where it adds value (like analysis of results).

Regardless, scratch org pooling – the practice of maintaining a pool of scratch orgs to reuse in CI –

could also benefit. A pool manager could be an AI that ensures a set of orgs are always ready and

recycles them. This saves org create time on each run.

Salesforce’s developer guide suggests that integrating DX into CI is straightforward (Source:

developer.salesforce.com), and indeed many teams have done it. The MCP server doesn’t require

changing that; it just provides a smarter interface on top. Think of it as an optional layer: if your CI system

can talk to an MCP server, it could trigger complex sequences with one command. If not, the traditional

method is fine. Over time, we expect tools like Salesforce DevOps Center or third-party CI providers to

possibly include AI-assisted steps (“click a button and an AI sets up your pipeline”). Having MCP available

means any such AI has a safe way to run the needed operations behind the scenes.

Automated Testing and Test Data Management

Beyond just running Apex tests in CI, scratch orgs are used for all sorts of testing: integration tests, user

acceptance testing (UAT), regression suites, etc. AI + MCP can help in a few ways:

On-demand Test Environments: A QA engineer could request, via a chat interface, something like

“spin up a test org with the Summer ’25 features enabled and load dataset X” and get a ready org

without filing an IT ticket. The MCP server can create the org and possibly load test data (with

custom tools or scripts). This accelerates testing cycles, especially for short-lived testing needs.

Because scratch orgs can mimic different editions and features (Source: salesforceben.com), an AI

could create multiple orgs with different settings for comparative testing.

Sophisticated Test Data Setup: As noted earlier, one big pain point is seeding test data. AI is very

good at generating data given a prompt (e.g., “create 5 Accounts and each with 3 Contacts”). Using

tools to insert records or run scripts, an AI agent can populate an org in seconds. This can be used in

both automated tests (the test script could call an MCP data generation tool) and manual testing (a

human tester could ask the agent, “set up 10 sample Opportunities closing next month” and voila).

The Reddit example we cited showed an agent identifying object relationships and required fields on

its own (Source: reddit.com) – something that normally requires reading schema documentation.

This leads to more robust test data because the AI can adapt to changes (if a required field is added,

the AI will detect the error and could fill it).

Salesforce DX Scratch Org Automation Using the MCP Server

Page 22 of 28

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_ci.htm#:~:text=continuous%20integration.%20,software%20projects%20hosted%20on%20GitHub
https://www.salesforceben.com/salesforce-scratch-orgs/#:~:text=The%20main%20difference%20between%20scratch,metadata%20from%20your%20Salesforce%20environment
https://www.reddit.com/r/SalesforceDeveloper/comments/1m0rdoc/salesforce_mcp/#:~:text=I%20have%20an%20MCP%20server,names%20and%20relationships%20by%20itself
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Running Special Tests: Maybe you have Selenium or other integration tests that need an

environment URL. An AI could create the org and output the login URL and credentials (maybe even

auto-log a test user in) for your test harness to use. Additionally, it could validate post-test that the

org can be deleted or if not, keep it for debugging. Today, a human might manually inspect a failed

test org; an AI could be instructed: “if tests fail, pause deletion and notify the team”.

Performance testing: Need 50,000 records in an object to test bulk operations? You could instruct

the AI to generate them. It could use a simple loop or leverage a tool like sfdx

force:data:tree:import under the hood. The important part is you can ask in plain language, and

you don’t have to craft a giant CSV yourself.

In short, AI-driven scratch orgs empower testers to focus on testing logic rather than environment setup.

They can get customized orgs quickly and consistently. Also, because each scratch org is isolated, tests

can be run in parallel on multiple orgs without interference – an agent could coordinate that (spin up 5

orgs for 5 parallel test suites, etc.).

Developer Onboarding and Productivity

Developer onboarding is a crucial use case that is often a slow process. New developers (or even existing

ones setting up a new project) have to configure local environments, obtain org access, load sample

data, etc. With scratch orgs and an AI assistant, we can make onboarding almost one-click:

New Project Setup: A developer could clone the repository of a Salesforce DX project, open it in VS

Code, and ask, “Set up my dev environment.” The AI agent, via MCP, could then do: authorize the

Dev Hub (maybe it provides a login link for the user to authorize once), create a scratch org with the

correct definition, assign them as a user, deploy all code to it, maybe even open the org in the

browser for them. In a few minutes, the developer has a running Salesforce org with all code and

configurations, and they can start coding or testing immediately. Compare this to a manual checklist

that might take half a day (“Step 1: get a Dev Hub, Step 2: run these 5 commands, Step 3: load data,

Step 4: assign perms, Step 5: troubleshoot XYZ, ...”). This frictionless setup can make new hires

productive on day 1.

Knowledge Transfer: The AI, being integrated, can also answer questions. A new dev might not

know “How do I assign a permission set?” – with an AI, they can simply ask that and it will do it (and

they learn by seeing the result). It’s both a tool and a tutor. The MCP server ensures the answer is

executed correctly rather than the AI giving a possibly outdated command that fails (Source:

developer.salesforce.com).

Salesforce DX Scratch Org Automation Using the MCP Server

Page 23 of 28

https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=run%20into%20a%20wall
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Consistent Environments: Onboarding often suffers when different people set up things differently.

With an AI following a central set of tools (which effectively encode best practices), everyone’s

scratch org gets configured the same way. The scratch org definition file is shared (Source:

developer.salesforce.com), and the actions (deploy these components, assign those perms) are the

same via the MCP tools. This reduces the “it works on my machine” syndrome.

Self-service for Developers: Even outside initial onboarding, a dev during development might need

a throwaway org to experiment with something. They can get one via the AI assistant quickly, without

disrupting their main work. Or if their scratch org gets messed up, they can destroy it and create a

fresh one in one command (makes them less hesitant to reset when needed, leading to cleaner dev

cycles).

Learning Curve Reduction: Not every developer is a Salesforce CLI expert or knows all the

metadata quirks. The AI shields them from that to some extent. They can be productive without

mastering every command upfront, which is great for, say, front-end developers working on LWC who

are less familiar with Salesforce deployment processes. Over time, they’ll learn by example, but the

AI lowers the entry barrier.

Finally, for broader organizational onboarding (like enabling AI for development), references like official

Trailhead modules or documentation can be embedded in the process. The AI could recommend after

setting up an org: “I’ve created your scratch org and deployed the app. Would you like to run sample data

load? (yes/no)”. This interactive and iterative support is far more engaging than a static wiki page.

In all these use cases – CI/CD, testing, onboarding – the theme is automation with intelligence. Scratch

orgs provide the ephemeral, flexible environment; the MCP server provides the secure and structured

control; and the LLM provides the intelligent orchestration and ease of use. This trio can dramatically

improve how we develop and deliver on the Salesforce platform, accelerating releases while maintaining

(or improving) quality.

Conclusion

Salesforce DX scratch orgs have already revolutionized how we do Salesforce development by enabling

source-driven, disposable environments (Source: developer.salesforce.com). Now, with the introduction

of the Salesforce DX MCP Server and AI integration, we are taking the next leap: making the creation and

management of those environments nearly effortless and conversational. By harnessing large

language models to drive DevOps workflows, teams can achieve unprecedented velocity – spinning up

orgs, deploying code, running tests, and tearing down – all with simple, intuitive commands and robust

automation under the hood.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 24 of 28

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=The%20scratch%20org%20is%20a,personal%20data%20to%20scratch%20orgs
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm#:~:text=Scratch%20orgs%20drive%20developer%20productivity,org%20when%20you%20want%20to
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

In this article, we covered how to set up the MCP server, connect it with an AI agent, and use it to

automate scratch org lifecycles from start to finish. We delved into implementation details like

configuration files and CLI equivalents so you have a solid understanding of what's happening behind the

scenes. We also emphasized best practices: use org allow-listing to keep things secure (Source:

github.com)(Source: github.com), log and monitor the AI’s actions, and maintain role-based controls

especially as you scale this capability across a team or CI system. The benefits in speed and reliability

are clear – workflows become faster (with less human idle time and fewer errors) and more consistent, as

the AI adheres to the defined processes (Source: developer.salesforce.com).

It’s important to note that this technology is still evolving. The Salesforce DX MCP Server is in Developer

Preview(Source: github.com), and Salesforce is continuously adding new tools and features. (Safe

Harbor applies, but they’ve hinted at upcoming tools for code analysis, Lightning web components, and

more by Dreamforce ’25 (Source: developer.salesforce.com).) Likewise, enterprise integration via

Agentforce will bring even more security and governance options (Source: developer.salesforce.com)

(Source: developer.salesforce.com). The good news is that it’s all built on open standards – the MCP

protocol – and much of it is open source. You can find the Salesforce DX MCP Server code on GitHub

(Source: github.com), and even contribute or tailor it to your needs. There are already community-driven

MCP servers (like MCP-Force) extending Salesforce automation capabilities (for example, handling

sandbox operations via natural language) (Source: lobehub.com), which shows the potential of this

ecosystem.

For further learning and exploration, here are some resources:

Official Salesforce DX MCP Server Repo and Docs: Check out the GitHub repository at

salesforcecli/mcp for the README, latest updates, and to report issues or feature requests (Source:

developer.salesforce.com)(Source: developer.salesforce.com). The README contains step-by-step

setup for various editors and more examples.

Salesforce Developers Blog: The Salesforce developers blog has posts like “Level Up Your

Developer Tools with Salesforce DX MCP” and “Introducing MCP Support Across Salesforce” which

provide insight into Salesforce’s vision for MCP and AI in the platform (Source:

developer.salesforce.com)(Source: developer.salesforce.com).

MCP Specification and Community: To understand the underlying protocol (and potentially build

your own MCP server for other tools), see the Model Context Protocol user guide and spec (Source:

developer.salesforce.com)(Source: developer.salesforce.com). The community is active in exploring

MCP for various use cases (there’s even a Yeoman generator to scaffold MCP servers in Node.js

(Source: dev.to)(Source: dev.to)).

Salesforce DX Scratch Org Automation Using the MCP Server

Page 25 of 28

https://github.com/salesforcecli/mcp
https://github.com/salesforcecli/mcp#:~:text=Configure%20Orgs
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,prone
https://github.com/salesforcecli/mcp#:~:text=NOTE%3A%20The%20Salesforce%20DX%20MCP,the%20future%20of%20this%20project
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=What%E2%80%99s%20next%20for%20MCP%3F
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Connect%20Agentforce%20to%20any%20MCP,server
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Authorized%20admins%20will%20have%20a,access%2C%20and%20how%20they%20operate
https://github.com/salesforcecli/mcp#:~:text=Overview%20of%20the%20Salesforce%20DX,Developer%20Preview
https://lobehub.com/mcp/rupertbarrowtm-mcp-force#:~:text=,retrieve%20images%20from%20rich%20text
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=If%20you%E2%80%99re%20ready%20to%20start,building%2C%20these%20resources%20can%20help
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,MCP%20User%20Guide
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=Model%20Context%20Protocol%20,code%20Salesforce%20Developers
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=In%20this%20post%2C%20we%E2%80%99ll%20explore,MCP%20servers%20natively%20within%20Agentforce
https://developer.salesforce.com/blogs/2025/06/introducing-mcp-support-across-salesforce#:~:text=Understanding%20the%20MCP%20stack
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,MCP%20User%20Guide
https://dev.to/formulahendry/create-your-own-mcp-server-from-scratch-38k6#:~:text=2
https://dev.to/formulahendry/create-your-own-mcp-server-from-scratch-38k6#:~:text=3,Project
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Trailhead and Workshops: Keep an eye on Trailhead for modules on AI-assisted development and

scratch org automation. As this is a new frontier, Salesforce may release hands-on trails or pilot

programs (Agentforce, for example).

Open Source Projects: Aside from the official repo, projects like the mentioned MCP-Force

(available on NPM as @rapidocloud/mcp-force) are worth looking at to see how others are

implementing things like data queries, OAuth flows, and even non-Salesforce tool integration via

MCP (Source: lobehub.com)(Source: lobehub.com).

In conclusion, Lightning-Fast Scratch-Org Automation isn’t just a catchy phrase – it’s a real capability

that you can start leveraging today. Professional developers and DevOps engineers can save time and

reduce mistakes by letting an AI agent handle the busywork, all while remaining in control through MCP’s

structured and secure framework. We encourage you to give it a try: install the DX MCP server,

experiment with natural language commands in a safe dev org, and imagine how this could fit into your

development flow or CI pipeline. It’s an exciting time in the Salesforce DevOps world, where AI and DX are

coming together to make “move fast without breaking things” a tangible reality (Source:

developer.salesforce.com). Happy automating, and may your scratch orgs be ever fresh and your

deployments ever swift!

Tags: salesforce dx, scratch orgs, devops, automation, mcp server, llm integration, ci/cd, salesforce development

About Cirra

About Cirra AI

Cirra AI is a specialist software company dedicated to reinventing Salesforce administration and delivery through

autonomous, domain-specific AI agents. From its headquarters in the heart of Silicon Valley, the team has built the

Cirra Change Agent platform—an intelligent copilot that plans, executes, and documents multi-step Salesforce

configuration tasks from a single plain-language prompt. The product combines a large-language-model

reasoning core with deep Salesforce-metadata intelligence, giving revenue-operations and consulting teams the

ability to implement high-impact changes in minutes instead of days while maintaining full governance and audit

trails.

Cirra AI’s mission is to “let humans focus on design and strategy while software handles the clicks.” To

achieve that, the company develops a family of agentic services that slot into every phase of the change-

management lifecycle:

Requirements capture & solution design – a conversational assistant that translates business

requirements into technically valid design blueprints.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 26 of 28

https://lobehub.com/mcp/rupertbarrowtm-mcp-force#:~:text=The%20MCP%20Force%20MCP%20Server,You%20can
https://lobehub.com/mcp/rupertbarrowtm-mcp-force#:~:text=This%20program%20provides%20an%20MCP,Salesforce%20organization%20through%20natural%20language
https://developer.salesforce.com/blogs/2025/06/level-up-your-developer-tools-with-salesforce-dx-mcp#:~:text=,prone
https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

Automated configuration & deployment – the Change Agent executes the blueprint across sandboxes

and production, generating test data and rollback plans along the way.

Continuous compliance & optimisation – built-in scanners surface unused fields, mis-configured sharing

models, and technical-debt hot-spots, with one-click remediation suggestions.

Partner enablement programme – a lightweight SDK and revenue-share model that lets Salesforce SIs

embed Cirra agents inside their own delivery toolchains.

This agent-driven approach addresses three chronic pain points in the Salesforce ecosystem: (1) the high cost of

manual administration, (2) the backlog created by scarce expert capacity, and (3) the operational risk of

unscripted, undocumented changes. Early adopter studies show time-on-task reductions of 70-90 percent for

routine configuration work and a measurable drop in post-deployment defects.

Leadership

Cirra AI was co-founded in 2024 by Jelle van Geuns, a Dutch-born engineer, serial entrepreneur, and 10-year

Salesforce-ecosystem veteran. Before Cirra, Jelle bootstrapped Decisions on Demand, an AppExchange ISV

whose rules-based lead-routing engine is used by multiple Fortune 500 companies. Under his stewardship the

firm reached seven-figure ARR without external funding, demonstrating a knack for pairing deep technical

innovation with pragmatic go-to-market execution.

Jelle began his career at ILOG (later IBM), where he managed global solution-delivery teams and honed his

expertise in enterprise optimisation and AI-driven decisioning. He holds an M.Sc. in Computer Science from Delft

University of Technology and has lectured widely on low-code automation, AI safety, and DevOps for SaaS

platforms. A frequent podcast guest and conference speaker, he is recognised for advocating “human-in-the-loop

autonomy”—the principle that AI should accelerate experts, not replace them.

Why Cirra AI matters

Deep vertical focus – Unlike horizontal GPT plug-ins, Cirra’s models are fine-tuned on billions of

anonymised metadata relationships and declarative patterns unique to Salesforce. The result is context-

aware guidance that respects org-specific constraints, naming conventions, and compliance rules out-of-

the-box.

Enterprise-grade architecture – The platform is built on a zero-trust design, with isolated execution

sandboxes, encrypted transient memory, and SOC 2-compliant audit logging—a critical requirement for

regulated industries adopting generative AI.

Partner-centric ecosystem – Consulting firms leverage Cirra to scale senior architect expertise across

junior delivery teams, unlocking new fixed-fee service lines without increasing headcount.

Road-map acceleration – By eliminating up to 80 percent of clickwork, customers can redirect scarce

admin capacity toward strategic initiatives such as Revenue Cloud migrations, CPQ refactors, or data-model

rationalisation.

Future outlook

Cirra AI continues to expand its agent portfolio with domain packs for Industries Cloud, Flow Orchestration, and

MuleSoft automation, while an open API (beta) will let ISVs invoke the same reasoning engine inside custom UX

extensions. Strategic partnerships with leading SIs, tooling vendors, and academic AI-safety labs position the

Salesforce DX Scratch Org Automation Using the MCP Server

Page 27 of 28

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

company to become the de-facto orchestration layer for safe, large-scale change management across the

Salesforce universe. By combining rigorous engineering, relentlessly customer-centric design, and a clear ethical

stance on AI governance, Cirra AI is charting a pragmatic path toward an autonomous yet accountable future for

enterprise SaaS operations.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. Cirra shall not be liable

for any damages arising from the use of this document. This content may include material generated with assistance from

artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical information independently.

All product names, trademarks, and registered trademarks mentioned are property of their respective owners and are used

for identification purposes only. Use of these names does not imply endorsement. This document does not constitute

professional or legal advice. For specific guidance related to your needs, please consult qualified professionals.

Salesforce DX Scratch Org Automation Using the MCP Server

Page 28 of 28

https://cirra.ai/?utm_source=pdf
https://cirra.ai/articles/salesforce-dx-scratch-org-automation-mcp

